
Python for Education

Learning Maths & Science using Python

and

writing them in LATEX

Ajith Kumar B.P.

https://scischool.in

Revised on 17/06/24

2

Preface

�Mathematics, rightly viewed, possesses not only truth, but supreme beauty � a beauty cold
and austere, like that of sculpture, without appeal to any part of our weaker nature, without the
gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection
such as only the greatest art can show�, wrote Bertrand Russell about the beauty of mathematics.
All of us may not reach such higher planes, probably reserved for Russels and Ramanujans, but
we also have beautiful curves and nice geometrical �gures with intricate symmetries, like fractals,
generated by seemingly dull equations. This book attempts to explore it using a simple tool, the
Python programming language.

I started using Python for the PHOENIX project (https://www.iuac.res.in/phoenix/), that
was developing computer interfaced science experiments. Pramode CE (https://pramode.net/)
introduced Python in to it and I followed. Writing this document was triggered by some of my
friends who are teaching mathematics at Calicut University.

In the �rst chapter, a general introduction about computers and high level programming lan-
guages is given. Basics of Python language, Python modules for array and matrix manipulation,
2D and 3D data visualization, type-setting mathematical equations using LaTex and numerical
methods in Python are covered in the subsequent chapters. Example programs are given for every
topic discussed. This document is meant for those who want to try out these examples and modify
them for better understanding. Huge amount of material is already available online on the topics
covered, and the references to many resources on the Internet are given for the bene�t of the serious
reader.

The examples in this book are tested with python3. Introductions to Pandas and Sympy are
add in the latest revission. The PDF �le is available on the website https://scischool.in/

python/index.html.
This document is prepared using LYX, a LATEX front-end. It is distributed under the GNU Free

Documentation License (www.gnu.org). Feel free to make verbatim copies of this document and
distribute through any media. For the LYX source �les please contact the author.

Ajith Kumar B P
IUAC , New Delhi (retired in 2021)
bpajith at gmail dot com
https://scischool.in
Last edit : 17-Jun-2024

https://scischool.in/python/index.html
https://scischool.in/python/index.html

Contents

1 Introduction 7
1.1 Hardware Components . 7
1.2 Software components . 8

1.2.1 The Operating System . 8
1.2.2 The User Interface . 8

1.2.2.1 The Command Terminal . 8
1.2.3 The File-system . 10

1.2.3.1 Ownership & permissions . 10
1.2.3.2 Current Directory . 11

1.3 Text Editors . 11
1.4 High Level Languages . 11
1.5 On Free Software . 12
1.6 Exercises . 12

2 Programming in Python 14
2.1 Getting started with Python . 14

2.1.1 Two modes of using Python Interpreter . 14
2.2 Variables and Data Types . 16
2.3 Operators and their Precedence . 17
2.4 Python Strings . 18

2.4.1 Slicing . 19
2.5 Python Lists . 19
2.6 Mutable and Immutable Types . 20
2.7 Input from the Keyboard . 20
2.8 Python Syntax, Colon & Indentation . 21
2.9 Controlling the Program Flow . 21

2.9.1 Iteration: while loops . 21
2.10 Iteration: for loops . 22
2.11 Conditional Execution: if, elif and else . 23
2.12 Modify loops : break and continue . 24
2.13 Line joining . 25
2.14 Exercises . 25
2.15 Functions . 27

2.15.1 Scope of variables . 28
2.15.2 Optional and Named Arguments . 29

2.16 More on Strings and Lists . 29
2.16.1 split and join . 30
2.16.2 Manipulating Lists . 30

3

CONTENTS 4

2.16.3 Copying Lists . 30
2.17 Python Modules and Packages . 31

2.17.1 Di�erent ways to import . 31
2.17.2 Packages . 32

2.18 File Input/Output . 32
2.19 Formatted Printing . 34
2.20 Exception Handling . 35
2.21 Matrices in pure Python . 35

2.21.1 Transpose of a matrix . 36
2.21.2 Matrix multiplication . 36
2.21.3 Cross product two vectors . 37
2.21.4 Determinant of a Matrix . 37
2.21.5 Inverting a Matrix . 38

2.22 Object Oriented Programming in Python . 39
2.22.1 Inheritance, reusing code . 40

2.23 Turtle Graphics . 41
2.24 Writing GUI Programs . 43
2.25 Exercises . 46

3 Arrays and Matrices 48
3.1 NumPy Arrays . 49

3.1.1 arange(start, stop, step) . 50
3.1.2 linspace(start, stop, number of elements) . 50
3.1.3 zeros(shape) . 50
3.1.4 ones(shape) . 50
3.1.5 random.random(shape) . 50
3.1.6 reshape(array, newshape) . 50
3.1.7 Copying . 51
3.1.8 Saving and Restoring . 51
3.1.9 Slicing to extract elements, rows and columns 52
3.1.10 Arithmetic Operations . 53
3.1.11 Pauli spin matrices . 54

3.2 Vectorizing Functions . 54
3.3 Exercises . 55

4 Data visualization 56
4.1 The Matplotlib Module . 56

4.1.1 2D plots . 57
4.1.2 Polar plots . 58
4.1.3 Pie Charts . 58
4.1.4 Multiple plots . 59

4.2 Plotting mathematical functions . 59
4.2.1 Sine function and friends . 60
4.2.2 Trouble with Circle . 61
4.2.3 Parametric plots . 61

4.3 Plotting Error Bars . 62
4.4 Simple 2D animation . 62
4.5 Famous Curves . 63

4.5.1 Astroid . 63
4.5.2 Ellipse . 64

CONTENTS 5

4.5.3 Spirals of Archimedes and Fermat . 65
4.5.4 Spirograph . 66

4.6 2D plot using colors . 66
4.6.1 Fractals . 67

4.7 3D Plots . 69
4.7.1 3D Line Plots . 69
4.7.2 Meshgrids . 70
4.7.3 Surface3D Plots . 71
4.7.4 Spherical harmonics . 71
4.7.5 Animating 3D plots . 72

4.8 Exercises . 73

5 Symbolic Computation, SymPy 74
5.1 The SymPy Module . 76
5.2 Symbols . 77
5.3 Formatting the Output . 77
5.4 Simpli�cation . 78

5.4.1 Expand . 78
5.4.2 Factor . 78
5.4.3 collect . 78

5.5 Calculus . 78
5.5.1 di�erentiation . 79
5.5.2 Integration . 80
5.5.3 Numeric Integration . 81

6 Introduction to Pandas 82
6.1 Series . 82
6.2 DataFrame . 85

6.2.1 From a Numpy array . 85
6.2.2 From a Dictionary of Series . 86
6.2.3 From a Dictionary of Lists/Arrays . 86
6.2.4 Loading and Saving CSV format �les . 87
6.2.5 Index and Column Properties . 87
6.2.6 Column Operations . 88
6.2.7 Indexing and Slicing Rows . 90
6.2.8 Concatenating DataFrames . 91

6.3 Practical Examples . 92
6.3.1 Temperature Data . 92
6.3.2 Electoral bond data . 95

7 Numerical methods 97
7.1 Taylor's Series . 97
7.2 Polynomial Interpolation . 98

7.2.1 Di�erence Table . 99
7.2.2 Newton's forward di�erence formula . 99
7.2.3 Newton's backward di�erence formula . 101
7.2.4 Lagrange's Interpolation formula . 102
7.2.5 Newton's General Interpolation Formula . 103

7.3 Numerical Integration . 105
7.3.1 Trapezoidal Rule . 105

CONTENTS 6

7.3.2 Simpson's 1/3-Rule . 106
7.4 Derivatives from the Interpolation Formula . 107

7.4.1 Numpy gradient function . 108
7.5 First Order Ordinary Di�erential Equations . 108

7.5.1 Euler method . 109
7.5.2 Second order Runge-Kutta method . 110
7.5.3 Fourth order Runge-Kutta method . 111
7.5.4 Function depending on the integral . 112

7.6 Second Order Ordinary Di�erential Equations . 113
7.7 Solution of Algebraic Equations . 115

7.7.1 The Bisection method . 116
7.7.2 Regula Falsi (method of Chords) . 117
7.7.3 Newton-Raphson Method . 117

7.8 System of Linear Equations . 119
7.8.1 Gauss-Jordan Elimination method . 119
7.8.2 Matrix Inversion method . 121

7.9 Inverse of Matrix by Gauss-Jordan method . 122
7.10 Least Squares Fitting . 123
7.11 Monte Carlo methods . 124
7.12 Fourier Series . 124
7.13 Exercises . 125

8 Applications in Mathematics and Physics 127
8.1 Addition of two sine waves, Beats . 127
8.2 Amplitude Modulation . 128
8.3 Radioactive decay . 128
8.4 Charged particle in E and M �elds . 129

9 Type setting using LATEX 131
9.1 Document classes . 131
9.2 Modifying Text . 132
9.3 Dividing the document . 132
9.4 Environments . 133
9.5 Typesetting Equations . 134

9.5.1 Building blocks for typesetting equations 135
9.6 Arrays and matrices . 136
9.7 Floating bodies, Inserting Images . 137
9.8 Example Application . 138
9.9 Exercises . 139

10 Installing GNU/Linux Operating System 141
10.1 Where to get Ubuntu . 141
10.2 Installing Ubuntu . 141
10.3 Installing Additional Software . 146
10.4 Synaptic Package Manager . 146

10.4.1 Behind the scene . 148

Chapter 1

Introduction

Primary objective of this book is to explore the possibilities of using Python language as a tool
for learning mathematics and science. The reader is not assumed to be familiar with computer
programming. Ability to think logically is good enough. Before getting into Python programming,
we will brie�y explain some basic concepts and tools required.

Computer is essentially an electronic device like a radio or a television. What makes it di�erent
from a radio or a TV is its ability to perform di�erent kinds of tasks using the same electronic
and mechanical components. This is achieved by making the electronic circuits �exible enough to
work according to a set of instructions. The electronic and mechanical parts of a computer are
called the Hardware and the set of instructions is called Software (or computer program). Just by
changing the Software, computer can perform vastly di�erent kind of tasks. The instructions are
stored in binary format using electronic switches.

1.1 Hardware Components

Central Processing Unit (CPU), Memory and Input/Output units are the main hardware compo-
nents of a computer. CPU1 can be called the brain of the computer. It contains a Control Unit
and an Arithmetic and Logic Unit, ALU. The control unit brings the instructions stored in the
main memory one by one and acts according to it. It also controls the movement of data be-
tween memory and input/output units. The ALU can perform arithmetic operations like addition,
multiplication and logical operations like comparing two numbers.

Memory stores the instructions and data, that is processed by the CPU. All types of information
are stored as binary numbers. The smallest unit of memory is called a binary digit or Bit. It can
have a value of zero or one. A group of eight bits are called a Byte. A computer has Main and
Secondary types of memory. Before processing, data and instructions are moved into the main
memory. Main memory is organized into words (having a size of 1, 2, 4 or 8 bytes). CPU can
select any memory location by using it's address. Main memory is made of semiconductor switches
and is very fast. There are two types of Main Memory. Read Only Memory and the Read/Write
Memory. The Read/Write Memory is often called Random Access Memory (RAM). All computers
contains some programs in the ROM which start running when you switch on the machine. Data
and programs to be stored for future use are saved to Secondary memory, mainly devices like Hard
disks, �oppy disks, CDROM or removable �ash storage like USB drives.

1The cabinet that encloses most of the hardware is called CPU by some, mainly the computer vendors. They
are not referring to the actual CPU chip.

7

CHAPTER 1. INTRODUCTION 8

The Input devices are for feeding the input data into the computer. Keyboard is the most
common input device. Mouse, scanner etc. are other input devices. The processed data is displayed
or printed using the output devices. The monitor screen and printer are the most common output
devices.

1.2 Software components

An ordinary user expects an easy and comfortable interaction with a computer, and most of
them are least inclined to learn even the basic concepts. To use modern computers for common
applications like browsing and word processing, all you need to do is to click on some icons and
type on the keyboard. However, to write your own computer programs, you need to learn some
basic concepts, like the operating system, editors, compilers, di�erent types of user interfaces etc.
This section describes the basics from that point of view.

1.2.1 The Operating System

Operating system (OS) is the software that interacts with the user and makes the hardware re-
sources available to the user. It starts running when you switch on the computer and remains
in control. On user request, operating system loads other application programs from disk to the
main memory and executes them. OS also provides a �le system, a facility to store information on
devices like �oppy disk and hard disk. In fact the OS is responsible for managing all the hardware
resources.

Various distributions of GNU/Linux and MS-Windows are the currently popular operating
systems. Based on certain features, operating systems can be classi�ed as:

� Single user, single process systems like MS DOS. Only one process can run at a time. Such
operating systems do not have much control over the application programs.

� Multi-tasking systems like MS Windows, where more than one processe can run at a time.

� Multi-user, multi-tasking systems like GNU/Linux, Unix etc. More than one person can use
the computer at the same time.

� Real-time systems, mostly used in control applications, where the response time to any
external input is maintained under speci�ed limits.

1.2.2 The User Interface

Interacting with a computer involves starting various application programs and managing them
on the monitor screen. The software that manages these actions is called the user interface. The
two most common forms of user interface have historically been the Command-line Interface,
where computer commands are typed out line-by-line, and theGraphical User Interface (GUI),
where a visual environment (consisting of windows, menus, buttons, icons, etc.) is present.

1.2.2.1 The Command Terminal

To run any particular program, we need to request the operating system to do so. Under a
Graphical User Interface, we do this by choosing the desired application from a menu. You need
to remember that it is possible only because someone has added it to the menu earlier. When
you start writing your own programs, obviously they will not appear in any menu. Another way
to request the operating system to execute a program is to enter the name of the program (more

CHAPTER 1. INTRODUCTION 9

Figure 1.1: A GNU/Linux Terminal.

precisely, the name of the �le containing it) at the Command Terminal. On an Ubuntu GNU/Linux
system, you can start a Terminal from the menu names Applications->Accessories->Terminal (or
by pressing Ctl-Alt-T). Figure 1.1 shows a Terminal displaying the list of �les in a directory (output
of the command 'ls -l' , the -l option is for long listing).

The command processor o�ers a host of features to make the interaction more comfortable. It
keeps track of the history of commands and we can recall previous commands, modify and reuse
them using the cursor keys. There is also a completion feature implemented using the Tab key
that reduces typing. Use the tab key to complete command and �lenames. To run hello.py from
our test directory, type python h and then press the tab key to complete it. If there are more than
one �le starting with 'h', you need to type more characters until the ambiguity is removed. Always
use the up-cursor key to recall the previous commands and re-issue it.

The commands given at the terminal are processed by a program called the shell. (The version
now popular under GNU/Linux is called bash, the Bourne again shell). Some of the GNU/Linux
commands are listed below.

� top : Shows the CPU and memory usage of all the processes started.

� cp �lename �lename : copies a �le to another.

� mv : moves �les from one folder to another, or rename a �le.

� rm : deletes �les or directories.

� man : display manual pages for a program. For example 'man bash' will give help on the
bash shell. Press 'q' to come out of the help screen.

� info : A menu driven information system on various topics.

See the manual pages of 'mv', cp, 'rm' etc. to know more about them. Most of these commands
are application programs, stored inside the folders /bin or /sbin, that the shell starts for you and
displays their output inside the terminal window.

CHAPTER 1. INTRODUCTION 10

Figure 1.2: The GNU/Linux �le system tree.

1.2.3 The File-system

Before the advent of computers, people used to keep documents in �les and folders. The designers
of the Operating System have implemented the electronic counterparts of the same. The storage
space is made to appear as �les arranged inside folders (directory is another term for folder). A
simpli�ed schematic of the GNU/Linux �le system is shown in �gure 1.2. The outermost directory
is called 'root' directory and represented using the forward slash character. Inside that we have
folders named bin, usr, home, tmp etc., containing di�erent type of �les.

1.2.3.1 Ownership & permissions

On a multi-user operating system, application programs and document �les must be protected
against any misuse. This is achieved by de�ning a scheme of ownerships and permissions. Each
and every �le on the system is owned by a speci�c user. The read, write and execute permissions
can be assigned to them, to control the usage. The concept of group is introduced to share �les
between a selected group of users.

There is one special user named root (also called the system administrator or the super user)
, who has permission to access all the resources. Ordinary user accounts, with a username and
password, are created for everyone who wants to use the computer. In a multi-user operating sys-
tem, like GNU/Linux, every user will have one directory inside which he can create sub-directories
and �les. This is called the 'home directory' of that user. Home directory of one user cannot be
modi�ed by another user.

The operating system �les are owned by root. The /home directory contains subdirectories
named after every ordinary user, for example, the user fred owns the directory /home/fred (�g
1.2) and its contents. That is also called the user's home directory. Every �le and directory has
three types of permissions : read, write and execute. To view them use the 'ls -l ' command. The
�rst character of output line tells the type of the �le. The next three characters show the rwx
(read, write, execute) permissions for the owner of that �le. Next three for the users belonging to
the same group and the next three for other users. A hyphen character (-) means the permission
corresponding to that �eld is not granted. For example, the �gure 1.1 shows a listing of �ve �les:

1. asecret.dat : read & write for the owner. No one else can even see it.

2. foo.png : rw for owner, but others can view the �le.

3. hello.py : rwx for owner, others can view and execute.

4. share.tex : rw for owner and other members of the same group.

CHAPTER 1. INTRODUCTION 11

5. xdata is a directory. Note that execute permission is required to view contents of a directory.

The system of ownerships and permissions also protects the system from virus attacks2. The
virus programs damage the system by modifying some application program. On a true multi-user
system, for example GNU/Linux, the application program and other system �les are owned by
the root user and ordinary users have no permission to modify them. When a virus attempts to
modify an application, it fails due to this permission and ownership scheme.

1.2.3.2 Current Directory

There is a working directory for every user. You can create subdirectories inside that and change
your current working directory to any of them. While using the command-line interface, you can
use the 'cd' command to change the current working directory. Figure 1.1 shows how to change the
directory and come back to the parent directory by using double dots. We also used the command
'pwd' to print the name of the current working directory.

1.3 Text Editors

To create and modify �les, we use di�erent application programs depending on the type of document
contained in that �le. Text editors are used for creating and modifying plain text matter, without
any formatting information embedded inside. Computer programs are plain text �les and to write
computer programs, we need a text editor. 'gedit' is a simple, easy to use text editor available on
GNU/Linux, which provides syntax high-lighting for several programming languages.

1.4 High Level Languages

In order to solve a problem using a computer, it is necessary to evolve a detailed and precise step
by step method of solution. A set of these precise and unambiguous steps is called an Algorithm.
It should begin with steps accepting input data and should have steps which gives output data.
For implementing any algorithm on a computer, each of it's steps must be converted into proper
machine language instructions. Doing this process manually is called Machine Language Program-
ming. Writing machine language programs needs great care and a deep understanding about the
internal structure of the computer hardware. High level languages are designed to overcome these
di�culties. Using them one can create a program without knowing much about the computer
hardware.

We already learned that to solve a problem we require an algorithm and it has to be executed
step by step. It is possible to express the algorithm using a set of precise and unambiguous
notations. The notations selected must be suitable for the problems to be solved. A high level
programming language is a set of well de�ned notations which is capable of expressing algorithms.

In general a high level language should have the following features.

1. Ability to represent di�erent data types (like characters, integers, decimal numbers etc.) by
creating variables. In addition to this it should also support a collection of similar objects
like character strings, arrays etc.

2. Arithmetic and Logical operators that acts on the supported data types.

2Do not expect this from the MS-Windows system. Even though it allows to create users, any user (by running
programs or by viruses) is allowed to modify the system �les. This may be because it grew from a single process
system like MSDOS and still keeps that legacy.

CHAPTER 1. INTRODUCTION 12

3. Control �ow structures for decision making, branching, looping etc.

4. A set of syntax rules that precisely specify the combination of words and symbols permissible
in the language.

5. A set of semantic rules that assigns a single, precise and unambiguous meaning to each
syntactically correct statement.

Program text written in a high level language is often called the Source Code. It is then translated
into the machine language by using translator programs. There are two types of translator pro-
grams, the Interpreter and the Compiler. Interpreter reads the high level language program line
by line, translates and executes it. Compilers convert the entire program in to machine language
and stores it to a �le which can be executed.

High level languages make the programming job easier. We can write programs that are machine
independent. For the same program di�erent compilers can produce machine language code to run
on di�erent types of computers and operating systems. BASIC, COBOL, FORTRAN, C, C++,
Python etc. are some of the popular high level languages, each of them having advantages in
di�erent �elds.

To write any useful program for solving a problem, one has to develop an algorithm. The
algorithm can be expressed in any suitable high level language. Learning how to develop an
algorithm is di�erent from learning a programming language. Learning a programming language
means learning the notations, syntax and semantic rules of that language. Best way to do this
is by writing small programs with very simple algorithms. After becoming familiar with the
notations and rules of the language one can start writing programs to implement more complicated
algorithms.

1.5 On Free Software

Software that can be used, studied, modi�ed and redistributed in modi�ed or unmodi�ed form
without restriction is called Free Software. In practice, for software to be distributed as free
software, the human-readable form of the program (the source code) must be made available to
the recipient under a license granting the above permissions.

The Free Software movement was conceived in 1983 by Richard Stallman to give the bene�t
of "software freedom" to computer users. Stallman founded the Free Software Foundation in 1985
to provide the organizational structure to advance his Free Software ideas. Later on, alternative
movements like Open Source Software came.

Software for almost all applications is currently available under the pool of Free Software.
GNU/Linux operating system, OpenO�ce.org o�ce suite, LATEX typesetting system, Apache web
server, GIMP image editor, GNU compiler collection, Python interpreter etc. are some of the
popular examples. For more information refer to www.gnu.org website.

1.6 Exercises

1. What are the basic hardware components of a computer.

2. Name the working directory of a user named 'ramu' under GNU/Linux.

3. What is the command to list the �le names inside a directory (folder).

4. What is the command under GNU/Linux to create a new folder.

CHAPTER 1. INTRODUCTION 13

5. What is the command to change the working directory.

6. Can we install more than one operating systems on a single hard disk.

7. Name two most popular Desktop Environments for GNU/Linux.

8. How to open a command window from the main menu of Ubuntu GNU/Linux.

9. Explain the �le ownership and permission scheme of GNU/Linux.

Chapter 2

Programming in Python

Python is a simple, high level language with a clean syntax. It o�ers strong support for integration
with other languages and tools, comes with extensive standard libraries, and can be learned within
few days. Many Python programmers report substantial productivity gains and feel the language
encourages the development of higher quality, more maintainable code. To know more visit the
Python website.1

2.1 Getting started with Python

To start programming in Python, we have to learn how to type the source code and save it to a
�le, using a text editor program. We also need to know how to open a Command Terminal and
start the Python Interpreter. The details of this process may vary from one system to another.
On an Ubuntu GNU/Linux system, you can open the Text Editor and the Terminal from the
Applications->Accessories menu. You may also choose an Integrated Development Environment.
IDEs allows you to edit and run the program, and also has features for managing projects with
multiple �les. 'Geany'2 is a simple and lightweight IDE.

The current version of Python di�ers from the earlier version in some ways. All the examples
given in this book are tested on python3. In case, if you do not have any computer with Python
installed try online3. Another option is to use Android apps like Pydroid 3 (for Pydroid 3, you
also need to install the 'pydroid repository plugin' inorder to enable the installation of Python
modules like Numpy, matplotlib etc.)

2.1.1 Two modes of using Python Interpreter

If you issue the command 'python3', without any argument, from the command terminal, the
Python interpreter will start and display a '>�>�>' prompt where you can type Python statements.
Use this method only for viewing the results of single Python statements, for example to use Python
as a calculator. It could be confusing when you start writing larger programs, having looping and
conditional statements. The preferred way is to enter your source code in a text editor, save it to
a �le (with .py extension) and execute it from the command terminal using Python. A screen-shot
of the Desktop with Text Editor and Terminal is shown in �gure 2.2.

1http://docs.python.org/tutorial/
2sudo apt install geany
3https://trinket.io/python3

14

CHAPTER 2. PROGRAMMING IN PYTHON 15

Figure 2.1: Geany IDE

Figure 2.2: Text Editor and Terminal Windows.

CHAPTER 2. PROGRAMMING IN PYTHON 16

In this document, we will start writing small programs showing the essential elements of the
language without going into the details. The reader is expected to run these example programs and
also to modify them in di�erent ways.It is like learning to drive a car, you master it by practicing.

Let us start with a program to display the words Hello World on the computer screen. This is
the customary 'hello world' program. There is another version that prints 'Goodbye cruel world',
probably invented by those who give up at this point! The Python 'hello world' program is shown
below.

Example. hello.py

print ('Hello World')

This should be entered into a text �le using any text editor. On a GNU/Linux system you may
use the text editor like 'gedit' to create the source �le, save it as hello.py . The next step is to
call the Python Interpreter to execute the new program. For that, open a command terminal and
(at the $ prompt) type:

$ python3 hello.py

The �lenames of python programs should not be any of the the keywords of python. For
example, naming a �le as 'string.py' or 'int.py' may result in hard to track error messages.

2.2 Variables and Data Types

As mentioned earlier, any high level programming language should support several data types.
The problem to be solved is represented using variables belonging to the supported data types.
Python supports numeric data types like integers, �oating point numbers and complex numbers.
To handle character strings, it uses the String data type. Python also supports other data types
like lists, tuples, dictionaries etc.

In languages like C, C++ and Java, we need to explicitly declare the type of a variable. This
is not required in Python. The data type of a variable is decided by the value assigned to it. This
is called dynamic data typing. The type of a particular variable can change during the execution
of the program. If required, one type of variable can be converted in to another type by explicit
type casting, like y = float(3). Strings are enclosed within single quotes or double quotes.

The program �rst.py shows how to de�ne variables of di�erent data types. It also shows how
to embed comments inside a program.

Example: �rst.py

�'

A multi-line comment, within a pair of three single quotes.

In a line, anything after a # sign is also a comment

�'

x = 10

print (x, type(x)) # print x and its type

x = 10.4

print (x, type(x))

x = 3 + 4j

print (x, type(x))

x = 'I am a String '

print (x, type(x))

CHAPTER 2. PROGRAMMING IN PYTHON 17

The output of the program is shown below. Note that the type of the variable x changes during
the execution of the program, depending on the value assigned to it.

10 <type 'int'>

10.4 <type 'float'>

(3+4j) <type 'complex'>

I am a String <type 'str'>

The program treats the variables like humans treat labelled envelopes. We can pick an envelope,
write some name on it and keep something inside it for future use. In a similar manner the program
creates a variable, gives it a name and keeps some value inside it, to be used in subsequent steps.
So far we have used four data types of Python: int, �oat, complex and str. To become familiar with
them, you may write simple programs performing arithmetic and logical operations using them.

Example: oper.py

x = 2

y = 4

print(x + y * 2)

s = 'Hello '

print(s + s)

print(3 * s)

print(x == y)

print(y == 2 * x)

print(5/2 , 5//2)

Running the program oper.py will generate the following output.

10

Hello Hello

Hello Hello Hello

False

True

2.5 2

Note that a String can be added to another string and it can be multiplied by an integer. Try
to understand the logic behind that and also try adding a String to an Integer to see what is the
error message you will get. We have used the logical operator == for comparing two variables.
The last line demonstrates the nature of division operator on python3. By default it does �oating
point division. Integer division can be forced by the operator //.

2.3 Operators and their Precedence

Python supports a large number of arithmetic and logical operators. They are summarized in the
table 2.1. An important thing to remember is their precedence. In the expression 2+3*4, is the
addition done �rst or the multiplication? According to elementary arithmetics, the multiplication
should be done �rst. It means that the multiplication operator has higher precedence than the
addition operator. If you want the addition to be done �rst, enforce it by using parenthesis like
(2 + 3) ∗ 4. Whenever there is ambiguity in evaluation, use parenthesis to clarify the order of
evaluation.

CHAPTER 2. PROGRAMMING IN PYTHON 18

Operator Description Expression Result

or Boolean OR 0 or 4 4

and Boolean AND 3 and 0 0

not x Boolean NOT not 0 True

in, not in Membership tests 3 in [2.2,3,12] True

<, <=, >, >=, !=, == Comparisons 2 > 3 False

| Bitwise OR 1 | 2 3

^ Bitwise XOR 1 ^ 5 4

& Bitwise AND 1 & 3 1

<�<, >�> Bitwise Shifting 1 <�< 3 8

+ , - Add, Subtract 6 - 4 2

*, / Multiply, divide 5 / 2 2.5
% reminder 5%2 1
// integer division 3/2 1

+x , -x Positive, Negative -5*2 -10

~ Bitwise NOT ~1 -2

** Exponentiation 2 ** 3 8

x[index] Subscription a='abcd' ; a[1] 'b'

Table 2.1: Operators in Python listed according to their precedence.

2.4 Python Strings

So far we have come across four data types: Integer, Float, Complex and String. Out of which,
String is somewhat di�erent from the other three. It is a sequence of same kind of elements,
characters. The individual elements of a String can be accessed by indexing as shown in string1.py.
String is a compound, or collection, data type.

Example: string1.py

s = 'hello world'

print(s[0]) # print first element, h

print(s[1]) # print e

print(s[-1]) # will print the last character

Addition and multiplication is de�ned for Strings, as demonstrated by string2.py.

Example: string2.py

a = 'hello'+'world'

print a

b = 'ha' * 3

print b

print a[-1] + b[0]

will give the output

helloworld
hahaha
dh

The last element of a and �rst element of b are added, resulting in the string 'dh'

CHAPTER 2. PROGRAMMING IN PYTHON 19

2.4.1 Slicing

Part of a String can be extracted using the slicing operation. It can be considered as a modi�ed
form of indexing a single character. Indexing using s[a : b] extracts elements s[a] to s[b − 1]. We
can skip one of the indices. If the index on the left side of the colon is skipped, slicing starts from
the �rst element and if the index on right side is skipped, slicing ends with the last element.

Example: slice.py

a = 'hello world'
print(a[3:5])
print(a[6:])
print(a[:5])

The reader can guess the nature of slicing operation from the output of this code, shown below.

'lo'

'world'

'hello'

Please note that specifying a right side index more than the length of the string is equivalent to
skipping it. Modify slice.py to print the result of a[6 : 20] to demonstrate it.

2.5 Python Lists

List is an important data type of Python. It is much more �exible than String. The individual
elements can be of any type, even another list. Lists are de�ned by enclosing the elements inside
a pair of square brackets, separated by commas. The program list1.py de�nes a list and print its
elements.

Example: list1.py

a = [2.3, 3.5, 234] # make a list

print (a[0])

a[1] = 'haha' # Change an element

print (a)

The output is shown below.
2.3
[2.3, 'haha', 234]
Lists can be sliced in a manner similar to that if Strings. List addition and multiplication are

demonstrated by the following example. We can also have another list as an element of a list.

Example: list2.py

a = [1,2]

print (a * 2)

print (a + [3,4])

b = [10, 20, a]

print (b)

The output of this program is shown below.
[1, 2, 1, 2]
[1, 2, 3, 4]
[10, 20, [1, 2]]

CHAPTER 2. PROGRAMMING IN PYTHON 20

2.6 Mutable and Immutable Types

There is one major di�erence between String and List types, List is mutable but String is not.
We can change the value of an element in a list, add new elements to it and remove any existing
element. This is not possible with String type. Uncomment the last line of third.py and run it to
clarify this point.

Example: third.py

s = [3, 3.5, 234] # make a list

s[2] = 'haha' # Change an element

print s

x = 'myname' # String type

#x[1] = 2 # uncomment to get ERROR

The List data type is very �exible, an element of a list can be another list. We will be using lists
extensively in the coming chapters. Tuple is another data type similar to List, except that it is
immutable. List is de�ned inside square brackets, tuple is de�ned in a similar manner but inside
parenthesis, like (3, 3.5, 24).

2.7 Input from the Keyboard

Since most of the programs require some input from the user, let us introduce this feature before
proceeding further. In python3, the input() function gets String type data from the keyboard, that
can be converted to integer, �oat or complex by using eval() function. A message to be displayed
can be given as an argument while calling these functions.4

Example: kin1.py

x = eval(input('Enter an integer '))

y = complex(input('Enter a complex number, (like 2+5j) ')

print ('The sum is ', x + y)

s = input('Enter a String ')

print ('You entered ', s)

It is also possible to read more than one variable using a single input() statement. String type
data read using input() may be converted into integer or �oat type if they contain only the valid
characters. In order to show the e�ect of conversion explicitly, we multiply the variables by 2
before printing. Multiplying a String by 2 prints it twice. If the String contains invalid characters
then eval() will give error.

Example: kin2.py

x,y = eval(input('Enter x and y separated by comma '))

print 'The sum is ', x + y

s = input('Enter a decimal number ')

a = float(s)

print s * 2 # prints string twice

print a * 2 # converted value times 2

4Functions will be introduced later. For the time being, understand that it is an isolated piece of code, called
from the main program with some input arguments and returns some output.

CHAPTER 2. PROGRAMMING IN PYTHON 21

We have learned about the basic data types of Python and how to get input data from the keyboard.
This is enough to try some simple problems and algorithms to solve them.

Example: area.py

pi = 3.1416

r = input('Enter Radius ')

a = pi * r ** 2 # A = πr2

print ('Area = ', a)

The above example calculates the area of a circle. Line three calculates r2 using the exponentiation
operator ∗∗, and multiply it with π using the multiplication operator ∗. r2 is evaluated �rst because
** has higher precedence than *, otherwise the result would be (πr)2.

2.8 Python Syntax, Colon & Indentation

Python was designed to be a highly readable language. It has a relatively uncluttered visual layout,
uses English keywords frequently where other languages use punctuation, and has notably fewer
syntactic constructions than other popular structured languages.

There are mainly two things to remember about Python syntax: indentation and colon. Python
uses indentation to delimit blocks of code. Both space characters and tab characters are
currently accepted as forms of indentation in Python. Mixing spaces and tabs can create
bugs that are hard to track, since the text editor does not show the di�erence. There should
not be any extra white spaces in the beginning of any line.

The line before any indented block must end with a colon (:) character.

2.9 Controlling the Program Flow

If programs can only execute from the �rst line to the last in that order, as shown in the previous
examples, it would be impossible to write any useful program. There are two types of control
�ow statements; Iteration (or loops) and Conditional execution. Python has two keywords for
implementing loops, while and for. Conditional execution is achieved using if, elif and else
keywords.

2.9.1 Iteration: while loops

For example, we need to print the multiplication table of eight. Using our present knowledge, it
would look like the following

Example: badtable.py

print (1 * 8)

print (2 * 8)

print (3 * 8)

print (4 * 8)

print (5 * 8)

Well, we are stopping here and looking for a better way to do this job.
The solution is to use the while loop of Python. The logical expression in front of while

is evaluated, and if it is True, the body of the while loop (the indented lines below the while

CHAPTER 2. PROGRAMMING IN PYTHON 22

statement) is executed. The process is repeated until the condition becomes false. We should
have some statement inside the body of the loop that will make this condition false after few
iterations. Otherwise the program will run in an in�nite loop and you will have to press Control-C
to terminate it.

The program table.py, de�nes a variable x and assigns it an initial value of 1. Inside the while
loop x ∗ 8 is printed and the value of x is incremented. This process will be repeated until the
value of x becomes greater than 10.

Example: table.py

x = 1

while x <= 10:

print (x * 8)

x = x + 1

As per the Python syntax, the while statement ends with a colon and the lines inside the while
loop are indented. Indentation can be done using tab or few spaces. In this example, we have
demonstrated a simple algorithm.

2.10 Iteration: for loops

Python for loops are slightly di�erent from the for loops of other languages. Python for loop
iterates over a sequence data type like a String, List or Tuple. During each iteration, one member
of the data is assigned to the loop variable. The �exibility of this can be seen from the examples
below.

Example: forloop.py

a = 'Hello'

for ch in a: # ch is the loop variable

print (ch)

b = ['haha', 3.4, 2345, 3+5j]

for item in b:

print (item)

which gives the output :
H
e
l
l
o
haha
3.4
2345
(3+5j)
For constructing for loops that executes a �xed number of times, we can use the range() function

and run the for loop over that.

Example: forloop2.py

for item in mylist:

print item

CHAPTER 2. PROGRAMMING IN PYTHON 23

The output will look like :
0
1
2
3
4
In python3 the output of range() function is an object belonging to a class called range. It is

possible to specify the starting point and increment as arguments in the form range(start, end+1,
step). The following example prints the table of 5 using this feature.

Example: forloop3.py

mylist = range(5,51,5)

for item in mylist:

print (item , end = ' ')

The output is shown below.
5 10 15 20 25 30 35 40 45 50
The print statement inserts a newline at the end by default. The end = ' ' argument changes

this to a space.
In some cases, we may need to traverse the list to modify some or all of the elements. This

can be done by looping over a list of indices generated by the range() function.For example, the
program forloop4.py zeros all the elements of the list.

Example: forloop4.py

a = [2, 5, 3, 4, 12]

size = len(a)

for k in range(size):

a[k] = 0

print a

The output is

[0, 0, 0, 0, 0]

2.11 Conditional Execution: if, elif and else

In some cases, we may need to execute some section of the code only if certain conditions are true.
Python implements this feature using the if, elif and else keywords, as shown in the next example.
The indentation levels of if and the corresponding elif and else must be kept the same.

Example: compare.py

x = input('Enter a string ')

if x == 'hello':

print ('You typed ', x)

Example: big.py

CHAPTER 2. PROGRAMMING IN PYTHON 24

x = eval(input('Enter a number '))

if x > 10:

print ('Bigger Number')

elif x < 10:

print ('Smaller Number')

else:

print ('Same Number')

The statement x > 10 and x < 15 can be expressed in a short form, like 10 < x < 15.
The next example uses while and if keywords in the same program. Note the level of indentation

when the if statement comes inside the while loop. Remember that, the if statement must be
aligned with the corresponding elif and else.

Example: big2.py

x = 1

while x < 11:

if x < 5:

print ('Small ', x)

else:

print ('Big ', x)

x = x + 1

print ('Done')

2.12 Modify loops : break and continue

We can use the break statement to terminate a loop, if some condition is met. The continue
statement is used to skip the rest of the block and go to the beginning again. Both are demonstrated
in the program big3.py shown below.

Example: big3.py

x = 1

while x < 10:

if x < 3:

print ('skipping work', x)

x = x + 1

continue

print (x)

if x == 4:

print ('Enough of work')

break

x = x + 1

print ('Done')

The output of big3.py is listed below.
skipping work 1
skipping work 2
3
4

CHAPTER 2. PROGRAMMING IN PYTHON 25

Enough of work
Done
Now let us write a program to �nd out the largest positive number entered by the user. The

algorithm works in the following manner. To start with, we assume that the largest number is
zero. After reading a number, the program checks whether it is bigger than the current value of
the largest number. If so the value of the largest number is replaced with the current number. The
program terminates when the user enters zero. Modify max.py to work with negative numbers
also.

Example: max.py

max = 0

while True: # Infinite loop

x = eval(input('Enter a number '))

if x > max:

max = x

if x == 0:

print (max)

break

2.13 Line joining

Python interpreter processes the code line by line. A program may have a long line of code that
may not physically �t in the width of the text editor. In such cases, we can split a logical line
of code into more than one physical lines, using backslash characters (\), in other words multiple
physical lines are joined to form a logical line before interpreting it.

if 1900 < year < 2100 and 1 <= month <= 12 :

can be split like

if 1900 < year < 2100 \

and 1 <= month <= 12 :

Do not split in the middle of words except for Strings. A long String can be split as shown below.

longname = 'I am so long and will \

not fit in a single line'

print (longname)

2.14 Exercises

We have now covered the minimum essentials of Python; de�ning variables, performing arithmetic
and logical operations on them, user input from keyboard and the control �ow statements. It
would be better to get a grip of it before proceeding further, by writing some code. Writing a
program to solve a problem involves two steps:

� Developing an algorithm to solve the problem

� implement it in some programming language

CHAPTER 2. PROGRAMMING IN PYTHON 26

Some problems given below requires the development of suitable algorithms, ie. breaking down
the problem in to sequence of simple steps.

1. Modify the expression print 5+3*2 to get a result of 16

2. Print all even numbers upto 30 (hint: use the reminder (%) operator)

3. Write Python code to remove the last two characters of 'I am a long string' by slicing, without
counting the characters. (hint: use negative indexing)

4. s = '012345' . (a) Slice it to remove last two elements (b) remove �rst two element.

5. a = [1,2,3,4,5]. Use Slicing and multiplication to generate [2,3,4,2,3,4] from it.

6. Compare the results of 5/2, 5//2 and 2.0/3.

7. Print the following pattern using a while loop
+
++
+++
++++

8. Print the following pattern using a for loop.
+
+++
+++++

9. Write code to print a number in the binary format (for example 5 will be printed as 101)

10. Write code to print all perfect cubes upto 2000.

11. Write a Python program to print the multiplication table of 5.

12. Write a program to �nd the volume of a box with sides 3,4 and 5 inches in cm3(1 inch =
2.54 cm)

13. Write a program to �nd the percentage of volume occupied by a sphere of diameter r �tted
in a cube of side r. Read r from the keyboard.

14. Write a Python program to calculate the area of a circle.

15. Write a program to divide an integer by another without using the / operator. (hint: use -
operator)

16. Count the number of times the character 'a' appears in a String read from the keyboard.
Keep on prompting for the string until there is no 'a' in the input.

17. Create an adding machine that will keep on asking the user for numbers, add them together
and show the total after each step. Terminate when user enters a zero.

18. Modify the adding machine to check for errors like user entering invalid characters.

19. Create a script that will convert Celsius to Fahrenheit. The program should ask the users to
enter the temperature in Celsius and should print out the temperature in Fahrenheit, using
f = 9

5c+ 32.

20. Write a program to convert Fahrenheit to Celsius.

CHAPTER 2. PROGRAMMING IN PYTHON 27

21. De�ne 2 + 5j and 2− 5j as complex numbers , and �nd their product. Verify the result by
de�ning the real and imaginary parts separately and using the multiplication formula.

22. Write the multiplication table of a number, from the user, using for loop.

23. Print the powers of 2 up to 1024 using a for loop. (only two lines of code)

24. De�ne the list a = [123, 12.4, 'haha', 3.4]
a) print all members using a for loop
b) print the �oat type members (use type() function)
c) insert a member after 12.4
d) append more members

25. Make a list containing 10 members using a for loop.

26. Generate multiplication table of 5 with two lines of Python code. (hint: range function)

27. Write a program to �nd the sum of �ve numbers read from the keyboard.

28. Write a program to read numbers from the keyboard until their sum exceeds 200. Modify
the program to ignore numbers greater than 99.

2.15 Functions

Large programs need to be divided into small logical units. A function is generally an isolated
unit of code that has a name and performs a well de�ned job. A function groups several program
statements into a unit and gives it a name. This unit can be invoked from other parts of a program.
Python allows you to de�ne functions using the def keyword. A function may have one or more
variables as parameters, which receive their values from the calling program.

In the example shown below, function parameters (a and b) get the values 3 and 4 respectively
from the caller. One can specify more than one variables in the return statement, separated by
commas. The function will return a tuple containing those variables. Some functions may not
have any arguments, but while calling them we need to use an empty parenthesis, otherwise the
function will not be invoked. If there is no return statement, a None is returned to the caller.

Example func.py

def sum(a,b): # a trivial function

return a + b

print (sum(3, 4))

The function factorial.py calls itself recursively. The value of argument is decremented before
each call. Try to understand the working of this by inserting print statements inside the function.

Example factor.py

def factorial(n): # a recursive function

if n == 0:

return 1

else:

return n * factorial(n-1)

print (factorial(10))

CHAPTER 2. PROGRAMMING IN PYTHON 28

Example �bonacci.py

def fib(n): # print Fibonacci series up to n

a, b = 0, 1

while b < n:

print (b)

a, b = b, a+b

print fib(30)

Runing �bonacci.py will print

1 1 2 3 5 8 13 21

Modify the code to replace a, b = b, a + b by two separate assignment statements, if required
introduce a third variable.

2.15.1 Scope of variables

The variables de�ned inside a function are not known outside the function. There could be two
unrelated variables, one inside and one outside, having the same name. The program scope.py
demonstrates this feature.

Example scope.py

def change(x):

counter = x

counter = 10

change(5)

print (counter)

The program will print 10 and not 5. The two variables, both named counter, are not related
to each other. In some cases, it may be desirable to allow the function to change some external
variable. This can be achieved by using the global keyword, as shown in global.py.

Example global.py

def change(x):

global counter # use the global variable

counter = x

counter = 10

change(5)

print (counter)

The program will now print 5. Functions with global variables should be used carefully, to avoid
inadvertent side e�ects.

CHAPTER 2. PROGRAMMING IN PYTHON 29

2.15.2 Optional and Named Arguments

Python allows function arguments to have default values; if the function is called without a partic-
ular argument, its default value will be taken. Due to this feature, the same function can be called
with di�erent number of arguments. The arguments without default values must appear �rst in
the argument list and they cannot be omitted while invoking the function. The following example
shows a function named power() that does exponentiation, but the default value of exponent is set
to 2.

Example power.py

def power(mant, exp = 2.0):

return mant ** exp

print (power(5., 3))

print (power(4.)) # prints 16

print (power()) # Gives Error

Arguments can be speci�ed in any order by using named arguments.

Example named.py

def power(mant = 10.0, exp = 2.0):

return mant ** exp

print (power(5., 3))

print (power(4.)) # prints 16

print (power(exp=3)) # mant gets 10.0, prints 1000

2.16 More on Strings and Lists

Before proceeding further, we will explore some of the functions provided for manipulating strings
and lists. Python strings can be manipulated in many ways. The following program prints the
length of a string, makes an upper case version for printing and prints a help message on the String
class.

Example: stringhelp.py

s = 'hello world'

print (len(s))

print (s.upper())

help(str) # press q to exit help

Python is an object oriented language and all variables are objects belonging to various classes.
The method upper() (a function belonging to a class is called a method) is invoked using the dot
operator. All we need to know at this stage is that there are several methods that can be used for
manipulating objects and they can be invoked like: variable_name.method_name().

CHAPTER 2. PROGRAMMING IN PYTHON 30

2.16.1 split and join

Splitting a String will result in a list of smaller strings. If you do not specify the separator, the
space character is assumed by default. To demonstrate the working of these functions, few lines
of code and its output are listed below.

Example: split.py

s = 'I am a long string'

print (s.split())

a = 'abc.abc.abc'

aa = a.split('.')

print (aa)

mm = '+'.join(aa)

print (mm)

The result is shown below

['I', 'am', 'a', 'long', 'string']
['abc', 'abc', 'abc']
'abc+abc+abc'

The List of strings generated by split is joined using '+' character, resulting in the last line of the
output.

2.16.2 Manipulating Lists

Python lists are very �exible, we can append, insert, delete and modify elements of a list. The
program list3.py demonstrates some of them.

Example: list3.py

a = [] # make an empty list

a.append(3) # Add an element

a.insert(0,2.5) # insert 2.5 as first element

print (a, a[0])

print (len(a))

The output is shown below.
[2.5, 3] 2.5
2

2.16.3 Copying Lists

Lists cannot be copied like numeric data types. The statement b = a will not create a new list b
from list a, it just make a reference to a. The following example will clarify this point. To make a
duplicate copy of a list, we need to use the copy module.

Example: list_copy.py

CHAPTER 2. PROGRAMMING IN PYTHON 31

a = [1,2,3,4]

print (a)

b = a # b refers to a

print (a == b) # True

b[0] = 5 # Modifies a[0]

print (a)

import copy

c = copy.copy(a)

c[1] = 100

print (a is c) # is False

print (a, c)

The output is shown below.
[1, 2, 3, 4]
True
[5, 2, 3, 4]
False
[5, 2, 3, 4] [5, 100, 3, 4]

2.17 Python Modules and Packages

One of the major advantages of Python is the availability of libraries for various applications like
graphics, networking and scienti�c computation. The standard library distributed with Python
itself has a large number of modules: time, random, sys, etc. are some of them. The site
http://docs.python.org/library/ has the complete reference.

Modules are loaded by using the import keyword. Several ways of using import is explained
below, using the math (containing mathematical functions) module as an example.5

2.17.1 Di�erent ways to import

simplest way to use import is shown in mathsin.py, where the function is invoked using the form
module_name.function_name(). In the next example, we use an alias for the module name.

Example mathsin.py

import math

print (math.sin(0.5)) # module_name.method_name

Example mathsin2.py

import math as m # Give another name for math

print (m.sin(0.5)) # Refer by the new name

We can also import the functions to behave like local (like the ones within our source �le) function,
as shown below. The character * is a wild card for importing all the functions.

5While giving names to your Python programs, make sure that you are not directly or indirectly importing any
Python module having same name. For example, if you create a program named math.py and keep it in your working
directory, the import math statement from any other program started from that directory will try to import your
�le named math.py and give error. If you ever do that by mistake, delete all the �les with .pyc extension from your
directory.

CHAPTER 2. PROGRAMMING IN PYTHON 32

Example mathlocal.py

from math import sin # sin is imported as local

print (sin(0.5))

Example mathlocal2.py

from math import * # import everything from math

print (sin(0.5))

In the third and fourth cases, we need not type the module name every time. But there could be
trouble if two modules imported contains a function with same name. In the program con�ict.py,
the sin() from numpy is capable of handling a list argument. After importing math.py, line 4, the
sin function from math module replaces the one from numpy. The error occurs because the sin()
from math can accept only a numeric type argument.

Example con�ict.py

from numpy import *

x = [0.1, 0.2, 0.3]

print (sin(x)) # numpy's sin can handle lists

from math import * # sin of math becomes effective

print (sin(x)) # will give ERROR

2.17.2 Packages

Packages are used for organizing multiple modules. The module name A.B designates a module
named B in a package named A. The concept is demonstrated using the packages Numpy6 and
Scipy.

Example submodule.py

import numpy as np

print (np.random.normal())

import scipy.special

print (scipy.special.j0(.1))

In this example random is a module inside the package NumPy. Similarly special is a module inside
the package Scipy. We use both of them in the package.module.function() format. But there is
some di�erence. In the case of Numpy, the random module is loaded by default, importing scipy
does not import the module special by default. This behavior can be de�ned while writing the
Package and it is up to the author of the package.

2.18 File Input/Output

Disk �les can be opened using the function named open() that returns a File object. Files can be
opened for reading or writing. There are several methods belonging to the File class that can be
used for reading and writing data.

Example w�le.py

6NumPy will be discusssed later in chapter 3.

CHAPTER 2. PROGRAMMING IN PYTHON 33

f = open('test.dat' , 'w')

f.write ('This is a test file')

f.close()

Above program creates a new �le named 'test.dat' (any existing �le with the same name will be
deleted) and writes a String to it. The following program opens this �le for reading the data.

Example r�le.py

f = open('test.dat' , 'r')

print (f.read())

f.close()

Note that the data written/read are character strings. read() function can also be used to read a
�xed number of characters, as shown below.

Example r�le2.py

f = open('test.dat' , 'r')

print (f.read(7)) # get first seven characters

print (f.read()) # get the remaining ones

f.close()

Now we will examine how to read a text data from a �le and convert it into numeric type. First
we will create a �le with a column of numbers.

Example w�le2.py

f = open('data.dat' , 'w')

for k in range(1,4):

s = '%3d\n' %(k)

f.write(s)

f.close()

The contents of the �le created will look like this.
1
2
3

Now we write a program to read this �le, line by line, and convert the string type data to integer
type, and print the numbers.7

Example r�le3.py

f = open('data.dat' , 'r')

while 1: # infinite loop

s = f.readline()

if s == � : # Empty string means end of file

break # terminate the loop

m = eval(s) # Convert to integer

print (m * 5)

f.close()

7This will give error if there is a blank line in the data �le. This can be corrected by changing the comparison
statement to if len(s) < 1: , so that the processing stops at a blank line. Modify the code to skip a blank line
instead of exiting (hint: use continue).

CHAPTER 2. PROGRAMMING IN PYTHON 34

Conversion Conversion Example Result

d , i signed Integer '%6d'%(12) ' 12'
f �oating point decimal '%6.4f'%(2.0/3) 0.667
e �oating point exponential '%6.2e'%(2.0/3) 6.67e-01
x hexadecimal '%x'%(16) 10
o octal '%o'%(8) 10
s string '%s'%('abcd') abcd
0d modi�ed 'd' '%05d'%(12) 00012

Table 2.2: Formatted Printing in Python

2.19 Formatted Printing

Formatted printing is done by using a format string followed by the % operator and the values
to be printed. If format requires a single argument, values may be a single variable. Otherwise,
values must be a tuple (just place them inside parenthesis, separated by commas) with exactly the
number of items speci�ed by the format string.

Example: format.py

a = 2.0 /3

print (a)

print ('a = %5.3f' %(a)) # upto 3 decimal places

Data can be printed in various formats. The conversion types are summarized in the following
table. There are several �ags that can be used to modify the formatting, like justi�cation, �lling
etc.

The following example shows some of the features available with formatted printing.

Example: format2.py

a = 'justify as you like'

print ('%30s'%a) # right justified

print ('%-30s'%a) # minus sign for left justification

for k in range(1,11): # A good looking table

print ('5 x %2d = %2d' %(k, k*5))

The output of format2.py is given below.

justify as you like

justify as you like

5 x 1 = 5

5 x 2 = 10

5 x 3 = 15

5 x 4 = 20

5 x 5 = 25

5 x 6 = 30

5 x 7 = 35

5 x 8 = 40

5 x 9 = 45

5 x 10 = 50

CHAPTER 2. PROGRAMMING IN PYTHON 35

2.20 Exception Handling

Errors detected during execution are called exceptions, like divide by zero. If the program does
not handle exceptions, the Python Interpreter reports the exception and terminates the program.
We will demonstrate handling exceptions using try and except keywords, in the example except.py.

Example: except.py

x = input('Enter a number ')

try:

print (10.0/x)

except:

print ('Division by zero not allowed')

If any exception occurs while running the code inside the try block, the code inside the except
block is executed. The following program implements error checking on input using exceptions.

Example: except2.py

def get_number():

while 1:

try:

a = input('Enter a number ')

x = atof(a)

return x

except:

print ('Enter a valid number')

print get_number()

2.21 Matrices in pure Python

In this chapter we will explore some matrix operations, using the list datatype. Lists inside list
will be used to represent 2D matrices. This will be done in pure python with the objective of
getting familiar with Python coding. For doing serious scienti�c computation one should use the
packages like Numpy and Scipy, providing special data types to implement matrices. They will
be introduced in the next chapter. Examining the code fragments given below along with their
outputs should give some idea about coding in Python. For example, the code

x = [1,2] #1D matrix

a = [[1,2], [3,4]] # 2x2 matrix

print (a[1][0]) # result is 3

print ('NR = ', len(a), 'NC = ', len(a[0]))

Prints

3

NR = 2 NC = 2

It indicates how the row and column are indexed, y[1][0] points to element at second row and �rst
column. The number of rows is the number of lists inside a , and the number of columns is the
size of each list.

According to matrix algebra cA = c
∑
ij Aij , means all elements should be multiplied by c.

Code should have two nested loops to traverse the rows and columns, as shown below.

CHAPTER 2. PROGRAMMING IN PYTHON 36

c = 5

for row in range(2):

for col in range(2):

a[row][col] *= c # x *= k is same as x = x * k

print(a)

Prints

[[5, 10], [15, 20]]

How to add two matrices y = [[1, 2], [3, 4]] and z = [[5, 6], [7, 8]]. The code required is,

a = [[1,2], [3,4]]

b = [[5,6], [7,8]]

c = [[0,0], [0,0]]

for row in range(2):

for col in range(2):

c[row][col] = a[row][col] + b[row][col]

print(a)

Prints

[[6, 8], [10, 12]]

2.21.1 Transpose of a matrix

Transpose is obtained by interchanging rows and columns of a matrix.

a = [[1,2], [3,4], [5,6]] # 3x2 matrix

res = [[0,0,0], [0,0,0]] # 2x3 matrix for results

for i in range(len(a)):

for j in range(len(a[0])):

res[j][i] = a[i][j]

print (res)

2.21.2 Matrix multiplication

Matrix multiplication is a bit more involved. The rule is cij =
∑
aikbkj . The number of rows

in the �rst matrix should be equal to the number of columns in the second matrix. Examine the
program mat-mult.py listed below. For each element cij is calculated using another loop.

3 x 3 matrices

a = [[1,2,3], [3,4,5], [10,11,12]]

b = [[5,6,7], [7,8,9], [12,13,14]]

c = [[0,0,0], [0,0,0], [0,0,0]]

NR = len(a) # number of rows

NC = len(b[0]) # number of columns

for row in range(NR):

for col in range(NC):

for i in range(len(a[0])): # number of columns of A

CHAPTER 2. PROGRAMMING IN PYTHON 37

c[row][col] += a[row][i] * b[i][col]

print (c)

2 x 3 and 3 x 2 matrices

a = [[1,2,3], [3,4,5]] # 2 x 3

b = [[5,6], [7,8], [12,13]] # 3 x 2

c = [[0,0], [0,0]] # 2 x 2

NR = len(a) # number of rows

NC = len(b[0]) # number of columns

for row in range(NR):

for col in range(NC):

for i in range(len(a[0])): # number of columns of A

c[row][col] += a[row][i] * b[i][col]

print (c)

2.21.3 Cross product two vectors

Vectors can be represented using matrices and cross product of two vectors is de�ned by

A×B =

∣∣∣∣∣∣
i j k
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣ = i(A2B3 −A3B2) + j(A3B1 −A1B3) + k(A1B2 −A2B1) (2.1)

The program cross.py calculates it using pure python code.

Example cross.py

def mycross2(a,b):

a1, a2, a3 = a

b1, b2, b3 = b

return [a2*b3 - a3*b2, a3*b1 - a1*b3, a1*b2 - a2*b1]

def mycross(a,b):

return [a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2],

a[0]*b[1]-a[1]*b[0]]

a = array([1,2,3])

b = array([4,5,6])

print(mycross(a,b))

print(mycross2(a,b))

The output is [-3, 6, -3] in both cases. The function mycross and mycross2 are given to practice
Python coding. It is not wise to carry your own cross all the way up to the mountain of scienti�c
computation. Better methods using Numpy will be discussed in the next chapter.

2.21.4 Determinant of a Matrix

Determinant is a scalar value that can be computed from the elements of a square matrix. For 2x2
and 3x3 matrices, they are de�ned by the equations

CHAPTER 2. PROGRAMMING IN PYTHON 38

A =
a b
c d

= ad− bc

A =
a b c
d e f
g h i

= a
e f
h i

− b d f
g i

+ c
d e
g h

= aei− afh+ bfg − bdi+ cdh− ceg

The python code given below calculates the determinant of a 3x3 matrix, represented using a
list of lists.

m = [[1.,1.,1.], [0.,2.,5.], [2.,5.,-1.]]

m1, m2, m3 = m[0]

m4, m5, m6 = m[1]

m7, m8, m9 = m[2]

det = m1*(m5*m9-m6*m8) - m2*(m4*m9-m6*m7) + m3*(m4*m8-m5*m7)

2.21.5 Inverting a Matrix

There are many ways to invert a matrix. We are using the method of taking the transpose of the
matrix of cofactors and dividing it by the determinant.

A−1 =
1

A
CT

The code mat-invert.py listed below does it in a crude manner, applicable only for a 3x3
matrix.

def invert(m):

m1, m2, m3 = m[0]

m4, m5, m6 = m[1]

m7, m8, m9 = m[2]

d = m1*(m5*m9-m6*m8) - m2*(m4*m9-m6*m7) + m3*(m4*m8-m5*m7)

return [[(m5*m9-m6*m8)/d, (m3*m8-m2*m9)/d, (m2*m6-m3*m5)/d],

[(m6*m7-m4*m9)/d, (m1*m9-m3*m7)/d, (m3*m4-m1*m6)/d],

[(m4*m8-m5*m7)/d, (m2*m7-m1*m8)/d, (m1*m5-m2*m4)/d]]

a = [[1.,1.,1.], [0.,2.,5.], [2.,5.,-1.]]

print (invert(a))

The output is

[[1.2857142857142858, -0.2857142857142857, -0.14285714285714285],

[-0.47619047619047616, 0.14285714285714285, 0.23809523809523808],

[0.19047619047619047, 0.14285714285714285, -0.09523809523809523]]

You can verify the result by calculating A−1A using the matrix multiplication program discussed
earlier. The result should be an identity matrix, that should look like

[[1.0, 0.0, 0.0],

[0.0, 0.9999999999999999, 0.0],

[2.220446049250313e-16, -5.551115123125783e-17, 1.0]]

CHAPTER 2. PROGRAMMING IN PYTHON 39

The elements are ones and zeros within the precision of our computation.
Examples in this section demonstrates the di�culties in using the list data type for representing

arrays and matrices. In the next chapter, we will use Numpy arrays to represent matrices, making
coding easier.

2.22 Object Oriented Programming in Python

OOP is a programming paradigm that uses objects (Structures consisting of variables and methods)
and their interactions to design computer programs. Python is an object oriented language but it
does not force you to make all programs object oriented and there is no advantage in making small
programs object oriented. In this section, we will discuss some features of OOP.

Before going to the new concepts, let us recollect some of the things we have learned. We have
seen that the e�ect of operators on di�erent data types is prede�ned. For example 2 ∗ 3 results in
6 and 2∗′ abc′ results in ′abcabc′. This behavior has been decided beforehand, based on some logic,
by the language designers. One of the key features of OOP is the ability to create user de�ned
data types. The user will specify, how the new data type will behave under the existing operators
like add, subtract etc. and also de�ne methods that will belong to the new data type.

We will design a new data type using the class keyword and de�ne the behavior of it. In the
program point.py, we de�ne a class named Point. The variables xpos and ypos are members of
Point. The __init__() function is executed whenever we create an instance of this class, the
member variables are initialized by this function. The way in which an object belonging to this
class is printed is decided by the __str__ function. We also have de�ned the behavior of add (+)
and subtract (-) operators for this class. The + operator returns a new Point by adding the x and
y coordinates of two Points. Subtracting a Point from another gives the distance between the two.
The method dist() returns the distance of a Point object from the origin. We have not de�ned the
behavior of Point under copy operation. We can use the copy module of Python to copy objects.

Example point.py

class Point:

�'

This is documentation comment.

help(Point) will display this.

�'

def __init__(self, x=0, y=0):

self.xpos = x

self.ypos = y

def __str__(self): # overloads print

return 'Point at (%f,%f)'%(self.xpos, self.ypos)

def __add__(self, other): #overloads +

xpos = self.xpos + other.xpos

ypos = self.ypos + other.ypos

return Point(xpos,ypos)

def __sub__(self, other): #overloads -

import math

dx = self.xpos - other.xpos

dy = self.ypos - other.ypos

CHAPTER 2. PROGRAMMING IN PYTHON 40

return math.sqrt(dx**2+dy**2)

def dist(self):

import math

return math.sqrt(self.xpos**2 + self.ypos**2)

The program point1.py imports the �le point.py to use the class Point de�ned inside it to demon-
strate the properties of the class. A self. is pre�xed when a method refers to member of the same
object. It refers to the variable used for invoking the method.

Example point1.py

from point import *

origin = Point()

print origin

p1 = Point(4,4)

p2 = Point(8,7)

print (p1)

print (p2)

print (p1 + p2)

print (p1 - p2)

print (p1.dist())

Output of program point1.py is shown below.

Point at (0.000000,0.000000)
Point at (4.000000,4.000000)
Point at (8.000000,7.000000)
Point at (12.000000,11.000000)
5.0
5.65685424949

In this section, we have demonstrated the OO concepts like class, object and operator overloading.

2.22.1 Inheritance, reusing code

Reuse of code is one of the main advantages of object oriented programming. We can de�ne
another class that inherits all the properties of the Point class, as shown below. The __init__
function of colPoint calls the __init__ function of Point, to get all work except initilization of
color done. All other methods and operator overloading de�ned for Point is inherited by colPoint.

Example cpoint.py

class colPoint(Point): #colPoint inherits Point

color = 'black'

def __init__(self,x=0,y=0,col='black'):

Point.__init__(self,x,y)

self.color = col

def __str__(self):

return '%s colored Point at (%f,%f)'% \

(self.color,self.xpos, self.ypos)

CHAPTER 2. PROGRAMMING IN PYTHON 41

Example point2.py

from cpoint import *

p1 = Point(5,5)

rp1 = colPoint(2,2,'red')

print (p1)

print (rp1)

print (rp1 + p1)

print (rp1.dist())

The output of point2.py is listed below.
Point at (5.000000,5.000000)
red colored Point at (2.000000,2.000000)
Point at (7.000000,7.000000)
2.82842712475

For a detailed explanation on the object oriented features of Python, refer to the online book
http://openbookproject.net/thinkcs/python/english3e/

2.23 Turtle Graphics

Turtle Graphics have been noted by many psychologists and educators to be a powerful aid in
teaching geometry, spatial perception, logic skills, computer programming, and art. The language
LOGO was speci�cally designed to introduce children to programming, using turtle graphics. An
abstract drawing device, called the Turtle, is used to make programming attractive for children by
concentrating on doing turtle graphics. It has been used with children as young as 3 and has a
track record of 30 years of success in education.

We will use the Turtle module of Python to play with Turtle Graphics and practice the logic
required for writing computer programs. Using this module, we will move a Pen on a two di-
mensional screen to generate graphical patterns. The Pen can be controlled using functions like
forward(distance), backward(distance), right(angle), left(angle) etc.8. Run the program turtle1.py
to understand the functions. This section is included only for those who want to practice program-
ming in a more interesting manner.

Example turtle1.py

from turtle import *

a = Pen() # Creates a turtle in a window

a.forward(50)

a.left(45)

a.backward(50)

a.right(45)

a.forward(50)

a.circle(10)

a.up()

a.forward(50)

a.down()

a.color('red')

a.right(90)

8http://docs.python.org/library/turtle.html

CHAPTER 2. PROGRAMMING IN PYTHON 42

Figure 2.3: Output of turtle2.py (b) turtle3.py (c) turtle4.py

a.forward(50)

input('Press Enter')

Example turtle2.py

from turtle import *

a = Pen()

for k in range(4):

a.forward(50)

a.left(90)

a.circle(25)

input('Press Enter')

Outputs of the program turtle2.py and turtle3.py are shown in �gure 2.3. Try to write more
programs like this to generate more complex patterns.

Example turtle3.py

from turtle import *

def draw_rectangle():

for k in range(4):

a.forward(50)

a.left(90)

a = Pen()

for k in range(36):

draw_rectangle()

a.left(10)

input('Press Enter')

The program turtle3.py creates a pattern by drwaing 36 squares, each drawn tilted by 10◦ from
the previous one. The program turtle4.py generates the fractal image as shown in �gure2.3(c).

Example turtle4.py

from turtle import *

def f(length, depth):

if depth == 0:

forward(length)

else:

f(length/3, depth-1)

CHAPTER 2. PROGRAMMING IN PYTHON 43

right(60)

f(length/3, depth-1)

left(120)

f(length/3, depth-1)

right(60)

f(length/3, depth-1)

f(500, 4)

input('Press any Key')

2.24 Writing GUI Programs

The programs we have written so far do not have any Graphical User Interface. Howto write
such programs. First thing one should understand is other than the graphics elements there is
some fundamental di�erence. In the text mode programs, the �ow of program execution is almost
decided by the code. It starts running and waits for user inputs as mentioned in the code. On
the other hand, the GUI programs are event driven (movement of mouse, clicking a mouse button,
pressing and releasing a key etc. are called events). The execution sequence of the program is
decided by these events, generated mostly by the user. For example, when the user clicks on a
Button, the code associated with that Button is executed.

Python has several tool kits for creating Graphical User Interfaces. A highly popular toolkit is
Qt and PyQt5 is the current python module for that. For more details refer to9. GUI Programming
is about creating Widgets like Button, Label, Canvas etc. on the screen and executing selected
functions in response to events. After creating all the necessary widgets and displaying them on
the screen, the control is passed on to PyQt toolkit by calling a function named app.exec_().
After that the program �ow is decided by the events and associated callback functions. You can
terminate the program by clicking on the 'x' at the top right corner, or by providing a Button for
that purpose.

For writing GUI program using Qt toolkit, the �rst step is to call the function QApplication.
After that we create various Widgets. The example program qt-win.py creates a window using
QWidget, assigns a title to it and then calls show() to display it on screen. After that app_exec()
takes over and waits for events generated within this window by the user. The output of qt-win.py
is shown in �gure2.4(a).

While we can code a simple window without using Object Oriented Programming (OOP), it
becomes more di�cult to as we improve the functionality of our application. We will rewrite the
previous application in the object oriented programming styles. The class MyGUI inherits all the
properties of the parent class QWidget. The __init__ function calls the super.__init__() to
initialize the parent class. This method becomes handy while writing more complicated programs.

Example qt-win.py

import sys

from PyQt5.QtWidgets import QApplication, QWidget

app = QApplication(sys.argv)

w = QWidget()

w.setWindowTitle('My First Qt Window')

9https://pythonspot.com/pyqt5/
https://likegeeks.com/pyqt5-tutorial/

CHAPTER 2. PROGRAMMING IN PYTHON 44

Figure 2.4: Outputs of (a)qt-win.py (b)qt-win-2.py

Figure 2.5: Outputs of (a) qt-button.py (b)qt-menu.py

w.show()

app.exec_()

Example qt-win-2.py

import sys

from PyQt5.QtWidgets import QApplication, QWidget

class MyGUI(QWidget):

def __init__(self):

super().__init__()

self.setWindowTitle('My First Object Oriented Qt Window')

self.show()

app = QApplication(sys.argv)

win = MyGUI()

sys.exit(app.exec_())

Button, Menu and Callback

The next example will show how to use a Button widget. A Button widget can have a callback
function, done() in this case, that gets executed when the user clicks on the Button. The program
will display a Button on the screen. When you click on it, the function done() will be executed.
The output of the program is shown in �gure 2.5(a).

CHAPTER 2. PROGRAMMING IN PYTHON 45

Example qt-button.py

import sys from PyQt5.QtWidgets

import QApplication, QWidget, QPushButton

class MyGUI(QWidget):

def __init__(self):

super().__init__()

self.setWindowTitle('Button and callback in Qt')

self.setGeometry(300, 300, 300, 200)

btn = QPushButton('Exit Button', self)

btn.clicked.connect(self.done)

self.show()

def done(self):

sys.exit(0)

app = QApplication(sys.argv)

win = MyGUI()

sys.exit(app.exec_())

Menu is another commonly used widget. First make a menu bar and add menus to it. Items are
added to each menu after that. In order to use the menu widget the class MyGUI is subclassed
from the QMainWindow widget. The output of the code listed below is shown in 2.5(b).

Example qt-menu.py

import sys

from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton

class MyGUI(QMainWindow):

def __init__(self):

super().__init__()

self.setWindowTitle('Button and callback in Qt')

self.setGeometry(300, 300, 300, 200)

mainMenu = self.menuBar()

fileMenu = mainMenu.addMenu('File')

fileMenu.addAction('Open',self.fileOpen)

editMenu = mainMenu.addMenu('Edit')

self.show()

def fileOpen(self):

print ('File Open called')

app = QApplication(sys.argv)

win = MyGUI()

sys.exit(app.exec_())

These examples are not su�cient to get one started in to programming GUIs using Qt, but plenty
of documentation is available on the Internet. The objective of this book is di�erent and we will
be using a di�erent toolkit for plotting graphs.

CHAPTER 2. PROGRAMMING IN PYTHON 46

2.25 Exercises

1. Generate multiplication table of eight and write it to a �le.

2. Write a Python program to open a �le and write 'hello world' to it.

3. Write a Python program to open a text �le and read all lines from it.

4. Write a program to generate the multiplication table of a number from the user. The output
should be formatted as shown below
1 x 5 = 5
2 x 5 = 10

5. Write Python code to generate the sequence of numbers
25 20 15 10 5
using the range() function. Delete 15 from the result and sort it. Print it using a for loop.

6. De�ne a string s = 'mary had a little lamb'.
a) print it in reverse order
b) split it using space character as separator

7. Join the elements of the list ['I', 'am', 'in', 'pieces'] using + character. Do the same using a
for loop also.

8. Create a window with �ve buttons. Each button should have some text on it.

9. Create a program that will put words in alphabetical order. The program should allow the
user to enter as many words as he wants to.

10. Create a program that will check a sentence to see if it is a palindrome. A palindrome is a
sentence that reads the same backwards and forwards ('malayalam').

11. A text �le contains two columns of numbers. Write a program to read them and print the
sum of numbers in each row.

12. Read a String from the keyboard. Multiply it by an integer to make its length more than
50. How do you �nd out the smallest number that does the job.

13. Write a program to �nd the length of the hypotenuse of a right triangle from the length of
other two sides, get the input from the user.

14. Write a program displaying 2 labels and 2 buttons. It should print two di�erent messages
when clicked on the two buttons.

15. Write a program using for loop to reverse a string.

16. Write a program to print the values of sine function from 0 to 2π with 0.1 increments. Find
the mean value of them.

17. Generate N random numbers using random.random() and �nd out how many are below 0.5
. Repeat the same for di�erent values of N to draw some conclusions.

18. Use the equation x = (−b±
√
b2 − 4ac)/2a to �nd the roots of 3x2 + 6x+ 12 = 0

19. Write a program to calculate the distance between points (x1,y1) and (x2,y2) in a Cartesian
plane. Get the coordinates from the user.

CHAPTER 2. PROGRAMMING IN PYTHON 47

20. Write a program to evaluate y=
√

2.3a+ a2 + 34.5 for a = 1, 2 and 3.

21. Print Fibonacci numbers up to 100, without using multiple assignment statement.

22. Draw a chess board pattern using turtle graphics.

23. Find the syntax error in the following code and correct it.
x=1
while x <= 10:
print x * 5

24. Write function to �nd the smallest of three numbers. Use it in a program that accepts inputs
from the user.

25. Write a function that returns the sum of numbers in a list.

26. Write a function returns are area of a circle, default radius should be taken as 1.

27. Split 'hello world' and join back to get 'hello+world'.

28. Read a 5 digit integer from keyboard and print the sum of the digits.

29. Modify the list [1,2,3,4] to make it [1,2,3,10]

30. Print the value of sin2x+ cos2x for 10, 45 and 80 degrees.

31. print a formatted multiplication table of 8, up to 10

32. Write Python code to multiply

(
1 2
3 4

)
with

(
1 0
0 i

)

33. Write python code to transpose

(
1 2 3
4 5 6

)
34. Create a class named vehicle with for wheels. Subclass a colored car from it.

35. Draw a rectangle using Turtle graphics.

36. Draw an equilateral triangle using Turtle graphics.

Chapter 3

Arrays and Matrices

In the previous chapter, we have learned some essential features of Python language and used the
math module to calculate trigonometric functions. Several matrix operations were carried out in
pure Python, using the list data type to store the matrices. The list data type is not really suitable
for representing arrays and matrices. In this chapter, we will use Numpy arrays to represent
matrices. That will make code much simpler and easy to understand, eliminating unnecessary
loops. If your main objective is to apply numerical methods to learn science or mathematics then
you should learn to use the well tested and highly e�cient modules like NumPy and SciPy.

The two di�erent approaches, coding everything from scratch or using available libraries, is
demonstrated by using two examples shown below. The program sine1.py generates the coordinates
to plot a sine wave and sine2.py does the same and also plots it

Example sine1.py

import math

x = 0.0

while x < 2 * math.pi:

print (x , math.sin(x))

x = x + 0.1

The output to the screen can be redirected to a �le as shown below, from the command prompt.
You can plot the data using any plotting program.

$ python sine1.py > sine.dat

Listing of sine2.py below, along with the result in 3.1

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 2 * np.pi, 100)

plt.plot (np.sin(x))

plt.show()

The impact of these libraries is evident even from the simple example shown above. Big arrays of
numbers and matrices are essential in scienti�c computation. NumPy is a package widely used for
scienti�c computing using Python1. In the subsequent sections of this book, we will use Numpy
arrays instead of Python lists to implement matrices. However, we will be writing code for many

1https://www.scipy.org/scipylib/faq.html

48

CHAPTER 3. ARRAYS AND MATRICES 49

Figure 3.1: Plot of Sine curve

mathematical operations like inverting a matrix or extrapolating data, just to give some idea about
the algorithms. Better versions of all those functions are available in Numpy and Scipy. For serious
scienti�c computation one should use them.

3.1 NumPy Arrays

NumPy is a Python extension module that provides e�cient operation on arrays of homogeneous
data. First thing to learn is how to create and manipulate arrays using numpy. There are several
functions that can be used for creating arrays.2 The mathematical functions like sine, cosine etc.
of numpy accepts array objects as arguments and return the results as arrays objects. NumPy
arrays can be indexed, sliced and copied like Python Lists.

The following examples shows how to make a one and two dimensional arrays.

Example 1Darray.py

import numpy as np

x = np.array([1., 2, 3] ,dtype=float) # Make array from list

print (x , type(x))

In the above example, we have created a numpy ndarray type object from a list. To make all
members �oat, either you specify the datatype explicitly or make at least one member �oat. In
the code, both are done, just for demonstration.

Example numpy2.py

import numpy as np

a = [[1, 2, 3] , [4, 5, 6]] # make a list of lists

x = np.array(a) # and convert to an array

print (x)

Other than than array(), there are several other functions that can be used for creating di�erent
types of arrays. Some of them are described below.

https://numpy.org/devdocs/user/quickstart.html
https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
https://www.python-course.eu/numpy.php
http://www.u.arizona.edu/~erdmann/mse350/topics/basic_linear_algebra.html#matrix-powers
2https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.array-creation.html

CHAPTER 3. ARRAYS AND MATRICES 50

3.1.1 arange(start, stop, step)

Creates an evenly spaced one-dimensional array. Start, stop, step-size and datatype are the argu-
ments. If datatype is not given, it is deduced from the other arguments. Note that, the values are
generated within the interval, including start but excluding stop.

arange(2.0, 3.0, .1)
makes the array([2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])

3.1.2 linspace(start, stop, number of elements)

Similar to arange(). Start, stop and number of samples are the arguments.
linspace(1, 2, 11) is equivalent to array([1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.])

3.1.3 zeros(shape)

Returns a new array of given shape and type, �lled zeros. For example zeros([2,3]) generates a 2
x 3 array �lled with zeros

[[0.,0.,0.]

[0.,0.,0.]]

3.1.4 ones(shape)

Similar to zeros() except that the elements are initialized to 1.

3.1.5 random.random(shape)

Similar to the functions above, but the matrix is �lled with random numbers ranging from 0 to 1,
of �oat type. For example, random.random([3,3]) will generate the 3x3 matrix;

array([[0.3759652 , 0.58443562, 0.41632997],

[0.88497654, 0.79518478, 0.60402514],

[0.65468458, 0.05818105, 0.55621826]])

3.1.6 reshape(array, newshape)

We can also make multi-dimensions arrays by reshaping a one-dimensional array. The function
reshape() changes dimensions of an array. The total number of elements must be preserved. Note
the object oriented way of calling reshape(). Since the array a is an object belonging to the Class
named Array, all the functions of that class are available under that object. Working of reshape()
can be understood by looking at reshape.py and its result.

Example reshape.py

import numpy as np

a = np.arange(20)

b = a.reshape([4,5])

print (b)

The result is shown below.

CHAPTER 3. ARRAYS AND MATRICES 51

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19]])

The program array_funcs.py demonstrates some of the functions for creating numpy arrays.

Example array_funcs.py

import numpy as np

a = np.arange(1.0, 2.0, 0.1)

print (a)

b = np.linspace(1,2,11)

print (b)

c = np.ones(5,'float')

print (c)

d = np.zeros(5, 'int')

print (d)

e = np.random.rand(5)

print (e)

Output of this program will look like;
[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]
[1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.]
[1. 1. 1. 1. 1.]
[0. 0. 0. 0. 0.]
[0.89039193 0.55640332 0.38962117 0.17238343 0.01297415]

3.1.7 Copying

Numpy arrays can be copied using the copy method, as shown below.

Example array_copy.py

import numpy as np

a = np.zeros(5)

print (a)

b = a

c = a.copy()

a[0] = 10

print a, b, c

The output of the program is shown below. The statement b = a does not make a copy of a.
Changing the �rst element of a has changed b also, but c is a separate entity.

[0. 0. 0.]
[10. 0. 0.] [10. 0. 0.] [10. 0. 0.]

3.1.8 Saving and Restoring

There are many ways for reading from �le and writing to data �les in numpy. We will discuss only
the ones saves data in the formatted text form, savetext() and loadtext() methods, as shown in
the code �leio.py

CHAPTER 3. ARRAYS AND MATRICES 52

Example �leio.py

import numpy as np

a = np.array([[2,3], [4,5]])

print(a)

np.savetxt('mydata.txt', a, fmt = '%2.3f', delimiter = ' ')

print('Data saved to text file')

b = np.loadtxt("mydata.txt", delimiter=" ")

print('Data loaded from text file')

print(b)

The output of the program will look like

[[2 3]

[4 5]]

Data saved to text file

Data loaded from text file

[[2. 3.]

[4. 5.]]

The text �le 'mydata.txt' will look like
2.000 3.000
4.000 5.000

3.1.9 Slicing to extract elements, rows and columns

Since slicing is used for extracting columns from a two dimensional array, we need to understand
it a bit better.

x = np.reshape(range(12),(4,3))

creates the array having 4 rows and 3 columns.

[[0, 1, 2],

[3, 4, 5],

[6, 7, 8],

[9, 10, 11]]

and extract elements from it in di�erent ways, python indexing starts from zero.

x[1] extracts the second row to give [3,4,5].

x[2,1] extracts 7, the element at third row and second column.

x[1:3, 1] extracts the elements [4,7] from second column.

x[:, 1} gives the full second column [1, 4, 7, 10]

x[:, :] gives the complete array

[[0, 1],

[3, 4]]

You should remember that a statement like y = x[1] does not create a new array. It is only a
reference to the second row or x . The statement y[0] = 100 changes x[1, 0]to 100.

The program slice.py

CHAPTER 3. ARRAYS AND MATRICES 53

import numpy as np

x = np.arange(12).reshape([4,3])

print(x[1]) # prints the second row

print(x[2,1]) # element at third row and second column

print(x[1:3,1])

print(x[:,1])

print(x[:2,:2])

will generate the output
[3 4 5]
7
[4 7]
[1 4 7 10]
[[0 1]
[3 4]]

3.1.10 Arithmetic Operations

Arithmetic operations on array di�ers from that of ordinary numbers. Adding or multiplying an
array object with an ordinary number will multiply all the elements by that number. However,
operations involving more than one array could be done in di�erent ways.

x = ones((2,2)) makes

[[1., 1.],

[1., 1.]]

x * 5 multiplies all elements by 5 to give

[[5., 5.],

[5., 5.]]

x * x will not perform a matrix multiplication. To perform a proper matrix multiplication try x@x
, np.dot(x, x) or x.dot(x) to get the result

[[2., 2.],
[2., 2.]]

Example aroper.py

import numpy as np

x = np.ones((2,2,))

print(x*5)

print(x * x)

print(x @ x)

Modifying this program for more operations is left as an exercise to the reader.

CHAPTER 3. ARRAYS AND MATRICES 54

3.1.11 Pauli spin matrices

We use the Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
to demonstrate some matrix operations using numpy, with the program pauli.py listed below

import numpy as np

sx = np.array([[0+0j, 1+0j], [1+0j, 0+0j]]) # sigma x

sy = np.array([[0+0j, 0-1j], [0+1j, 0+0j]]) # sigma y

sz = np.array([[1+0j, 0+0j], [0+0j, -1+0j]]) # sigma z

print ('sx\n', sx)

print ('Transpose(sx)\n', np.transpose(sx))

commutexy = sx.dot(sy) - sy.dot(sx)

print ('[sx,sy]\n',commutexy)

sz2i = 2 * (0+1j) * sz

print ('2 i sz\n',sz2i)

print (sz2i == commutexy)

The output of the program is given below. The last result shows that [σx, σy] = 2iσz . Refer to
Wikipedia3 for more information.

sx

[[0.+0.j 1.+0.j]

[1.+0.j 0.+0.j]]

Transpose(sx)

[[0.+0.j 1.+0.j]

[1.+0.j 0.+0.j]]

[sx,sy]

[[0.+2.j 0.+0.j]

[0.+0.j 0.-2.j]]

2isz

[[0.+2.j 0.+0.j]

[0.+0.j 0.-2.j]]

[[True True]

[True True]]

3.2 Vectorizing Functions

The functions like sine, log etc. from NumPy are capable of accepting arrays as arguments. This
eliminates the need of writing loops in our Python code.

Example vfunc.py

import numpy as np

a = np.array([1,10,100,1000])

print (np.log10(a))

3https://en.wikipedia.org/wiki/Pauli_matrices

CHAPTER 3. ARRAYS AND MATRICES 55

The output of the program is [0. 1. 2. 3.] , where the log of each element is calculated and
returned in an array. This feature simpli�es the programs a lot. Numpy also provides a function
to vectorize functions written by the user.

Example vectorize.py

import numpy as np

def spf(x):

return 3*x

vspf = np.vectorize(spf)

a = np.array([1,2,3,4])

print (vspf(a))

The output will be [3 6 9 12] .

3.3 Exercises

1. Write code to make a one dimensional matrix with elements 5,10,15,20 and 25. make another
matrix by slicing the �rst three elements from it.

2. Create a 3× 2 matrix and print the sum of its elements using for loops.

3. Create a 2× 3 matrix and �ll it with random numbers.

4. Use linspace to make an array from 0 to 10, with step-size of 0.1

5. Use arange to make an 100 element array ranging from 0 to 10

6. Make an array a = [2,3,4,5] and copy it to b. change one element of b and print both.

7. Make a 3x3 matrix and multiply it by 5.

8. Create two 3x3 matrices and add them.

9. Write programs to demonstrate the dot and cross products.

10. Using matrix inversion, solve the system of equations
4x1 = 2x2 + x3 = 11
=2x1 + 4x2 = 2x3 = =16
x1 = 2x2 + 4x3 = 17

11. Find the new values of the coordinate (10,10) under a rotation by angle π/4.

12. Write a vectorized function to evaluate y = x2 and print the result for x=[1,2,3].

13. Create a 4x3 matrix using range() and reshape().

14. Extract the second row from a 4x3 matrix

15. Extract the second column from a 3x3 matrix

16. create a matrix [[1,2] , [3,4]]. Save it to a �le, read it back and print.

Chapter 4

Data visualization

A graph or chart can be used for presenting numerical data in visual form. A graph is one
of the easiest ways to compare numbers. They should be used to make facts clearer and more
understandable. Results of mathematical computations are often presented in graphical format.
In this chapter, we will explore the Python modules used for generating two and three dimensional
graphs of various types.

4.1 The Matplotlib Module

Matplotlib1 is a python package that produces publication quality �gures in a variety of hardcopy
formats. You can generate plots, histograms, power spectra, bar charts, error-charts, scatter-plots,
etc, with just a few lines of code and have full control of line styles, font properties, axes properties,
etc. The data points to the plotting functions are supplied as Python lists or Numpy arrays.

Matplotlib creates a Figure object (representing your entire plot window). Inside this, it creates
one or more Axes objects by using the add_subplot() method. Inside the Axes object, the drawing
objects are created using the methods like plot() etc. The sequence is shown below:

import matplotlib.pyplot as plt

fig = plt.figure()

ax = fig.add_subplot()

ax.plot([1,2,3], [10,12,15])

plt.show()

However, in the case of 2D plots the plot() function can be called directly like:

import matplotlib.pyplot as plt

plt.plot([1,2,3], [10,12,15])

plt.show()

In this case the Figure and Axes objects are created and managed by Matplotlib. The �rst method
is called using the explicit �Axes� interface. The second one is using the implicit �pyplot� interface.
We will be using the implicit method for all the 2D plots. The explicit way of creating the objects
will be used where the references to the Figure and Axes objects are required, for example creating
2D animations or 3D plots.

1https://www.tutorialspoint.com/matplotlib/matplotlib_quick_guide.htm
https://matplotlib.org/
https://matplotlib.org/tutorials/introductory/pyplot.html#sphx-glr-tutorials-introductory-pyplot-py

56

CHAPTER 4. DATA VISUALIZATION 57

4.1.1 2D plots

Let us start with some simple plots to become familiar with matplotlib.

Example plot1.py

import matplotlib.pyplot as plt

data = [1,2,5]

plt.plot(data)

plt.show()

In the above example, the x-axis of the three points is assumed as [0,1,2]. We can specify both the
axes as shown below.

Example plot2.py

import matplotlib.pyplot as plt

x = [1,2,5]

y = [4,5,6]

plt.plot(x,y)

plt.show()

By default, the color of �rst plot is blue and the line style is continuous. This can be changed by
an optional argument after the coordinate data, which is the format string that indicates the color
and line type of the plot. The default format string is `b-` (blue, continuous line). Let us rewrite
the above example to plot using red circles. We will also set the ranges for x and y axes and label
them, as shown in plot3.py.

Example plot3.py

import matplotlib.pyplot as plt

x = [1,2,5]

y = [4,5,6]

plt.plot(x,y,'ro')

plt.xlabel('x-axis')

plt.ylabel('y-axis')

plt.axis([0,6,1,7])

plt.show()

The �gure 4.1 shows two di�erent plots in the same window, using di�erent markers and colors.
It also shows how to use legends.

Example plot4.py

import numpy as np

import matplotlib.pyplot as plt

t = np.arange(0.0, 5.0, 0.2)

plt.plot(t, t**2,'x', label='t^2') # t^{2}

plt.plot(t, t**3,'ro', label='t^3') # t^{3}

plt.legend(framealpha=0.5)

plt.show()

We can specify the markers and colors in the following manner also.

CHAPTER 4. DATA VISUALIZATION 58

Figure 4.1: Output of (a) plot4.py (b) subplot1.py (c) piechart.py

plt.plot(t, t**2, color='red', marker='x')

The markers and colors available are,

markers = ["." , "," , "o" , "v" , "^" , "<", ">"]

colors = ['r','g','b','c','m', 'y', 'k']

4.1.2 Polar plots

Polar coordinates locate a point on a plane with one distance and one angle. The distance `r' is
measured from the origin. The angle θ is measured from some agreed starting point. Use the
positive part of the x − axis as the starting point for measuring angles. Measure positive angles
anti-clockwise from the positive x− axis and negative angles clockwise from it.

Matplotlib supports polar plots, using the polar(θ, r) function. Let us plot a circle using polar().
For every point on the circle, the value of radius is the same but the polar angle θ changes from
0to π

2 . Both the coordinate arguments must be arrays of equal size. Since θ is having 100 points
, r also must have the same number. This array can be generated using the ones() function. The
axis([θmin, θmax, rmin, rmax) function can be used for setting the scale.

Example polar.py

import numpy as np

import matplotlib.pyplot as plt

th = np.linspace(0, np.pi/2,100)

r = 5 * np.ones(100) # radius = 5

plt.polar(th,r)

plt.show()

4.1.3 Pie Charts

An example of a pie chart is given below. The percentage of di�erent items and their names are
given as arguments. The output is shown in �gure 4.1(c).

Example piechart.py

import matplotlib.pyplot as plt

labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'

fracs = [25, 25, 30, 20]

plt.pie(fracs, labels=labels)

plt.show()

CHAPTER 4. DATA VISUALIZATION 59

4.1.4 Multiple plots

Matplotlib allows you to have multiple plots in the same window, using the subplot() command as
shown in the example subplot1.py, whose output is shown in �gure 4.1(b).

Example subplot1.py

import matplotlib.pyplot as plt

plt.subplot(211) # the first subplot

plt.plot([1,2,3,4])

plt.xlabel('first row')

plt.subplot(212) # the second subplot

plt.plot([4,2,3,1])

plt.xlabel('second row')

plt.show()

The arguments to subplot function are NR (number of rows) , NC (number of columns) and a
�gure number, that ranges from 1 to NR ∗NC. The commas between the arguments are optional
if NR ∗NC < 10, ie. subplot(2,1,1) can be written as subplot(211).

Another example of subplot is given is subplot2.py. You can modify the variable NR and NC
to watch the results. Please note that the % character has di�erent meanings. In (pn+1)%5, it
is the reminder operator resulting in a number less than 5. The % character also appears in the
String formatting.

Example subplot2.py

import numpy as np

import matplotlib.pyplot as plt

mark = ['x','o','^','+','>']

NR = 2 # number of rows

NC = 3 # number of columns

pn = 1

for row in range(NR):

for col in range(NC):

subplot(NR, NC, pn)

a = np.random.rand(10) * pn

plt.plot(a, marker = mark[(pn+1)%5])

plt.xlabel('plot %d X'%pn)

plt.ylabel('plot %d Y'%pn)

pn = pn + 1

plt.show()

The output is shown in figure4.2.

4.2 Plotting mathematical functions

One of our objectives is to understand various mathematical functions by plotting them graphically.
We will use the arange, linspace and logspace functions from numpy to generate the input data and
also the vectorized versions of the functions. For the function arange(), the third argument is the
step-size. The total number of elements is calculated from start, stop and step-size. In the case of
linspace(), we provide start, stop and the total number of points. The step size is calculated from
these three parameters. Please note that to create a data set ranging from 0 to 1 (including both)
with a step-size of 0.1, we need to specify linspace(0,1,11) and not linspace(0,1,10).

CHAPTER 4. DATA VISUALIZATION 60

Figure 4.2: Multiple plots

Figure 4.3: (a) Output of npsin.py (b) Output of circ.py .

4.2.1 Sine function and friends

Let the �rst example be the familiar sine function. The input data is from −π to +π radians2. To
make it a bit more interesting we are plotting sinx2 also. The objective is to explain the concept
of odd and even functions. Mathematically, we say that a function f(x) is even if f(x) = f(−x)
and is odd if f(−x) = −f(x). Even functions are functions for which the left half of the plane
looks like the mirror image of the right half of the plane. From the �gure 4.3(a) you can see that
sinx is odd and sinx2 is even.

Example npsin.py

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi , 200)

y = np.sin(x)

y1 = np.sin(x*x)

2Why do we need to give the angles in radians and not in degrees. Angle in radian is the length of the arc de�ned
by the given angle, with unit radius. Degree is just an arbitrary unit.

CHAPTER 4. DATA VISUALIZATION 61

Figure 4.4: (a)Output of circpar.py. (b)Output of arcs.py

plt.plot(x,y)

plt.plot(x,y1,'r')

plt.show()

Exercise: Modify the program npsin.py to plot sin2 x , cosx, sinx3 etc.

4.2.2 Trouble with Circle

Equation of a circle is x2 + y2 = a2 , where a is the radius and the circle is located at the origin
of the coordinate system. In order to plot it using Cartesian coordinates, we need to express y in
terms of x, and is given by

y =
√
a2 − x2

We will create the x-coordinates ranging from −a to +a and calculate the corresponding values
of y. This will give us only half of the circle, since for each value of x, there are two values of y
(+y and -y). The following program circ.py creates both to make the complete circle as shown in
�gure 4.3(b). Any multi-valued function will have this problem while plotting. Such functions can
be plotted better using parametric equations or using the polar plot options, as explained in the
coming sections.

Example circ.py

import numpy as np

import matplotlib.pyplot as plt

a = 10.0

x = np.linspace(-a, a , 200)

yupper = np.sqrt(a**2 - x**2)

ylower = -np.sqrt(a**2 - x**2)

plt.plot(x,yupper)

plt.plot(x,ylower)

plt.show()

4.2.3 Parametric plots

The circle can be represented using the equations x = a cos θ and y = a sin θ . To get the complete
circle θ should vary from zero to 2π radians. The output of circpar.py is shown in �gure 4.4(a).

CHAPTER 4. DATA VISUALIZATION 62

Example circpar.py

import numpy as np

import matplotlib.pyplot as plt

a = 10.0

th = np.linspace(0, 2*np.pi, 200)

x = a * np.cos(th)

y = a * np.sin(th)

plt.plot(x,y)

plt.show()

Changing the range of θ to less than 2π radians will result in an arc. The following example plots
several arcs with di�erent radii. The for loop will execute four times with the values of radius
5,10,15 and 20. The range of θ also depends on the loop variable. For the next three values it will
be π, 1.5π and 2π respectively. The output is shown in �gure 4.4(b).

Example arcs.py

import numpy as np

import matplotlib.pyplot as plt

a = 10.0

for a in range(5,21,5):

th = np.linspace(0, np.pi * a/10, 200)

x = a * np.cos(th)

y = a * np.sin(th)

plt.plot(x,y)

plt.show()

4.3 Plotting Error Bars

The programm errbar.py listed below shows how to add errorbars to a plot.

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(10)

y = 5 * np.sin(x / 5)

dy = np.linspace(.1, 0.3, 10)

plt.plot(x,y)

plt.errorbar(x, y, yerr=dy)

plt.show()

4.4 Simple 2D animation

Matplotlib supports some animation functions. Program animate.py uses FuncAnimation() to
do a basic animation of a sine wave. A matplotlib '�gure' object is created and a 'line' is drawn.
Invoking the 'FuncAnimation' function sets up calling 'update' periodically, with frame number
sequentially incremented from 0 to 99, that is used for adding a phase increment to the plot. You
may change the variable 'interval' to adjust the update rate.

CHAPTER 4. DATA VISUALIZATION 63

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation as fa

fig1 = plt.figure()

ax = fig.add_subplot()

x = np.linspace(-2*np.pi, 2*np.pi, 100)

L, = ax.plot(x, np.sin(x))

def update(fnum):

L.set_data(x, np.sin(x+ 0.1 *fnum))

anim = fa(fig1, update, frames=100, interval=50)

plt.show()

4.5 Famous Curves

Connection between di�erent branches of mathematics like trigonometry, algebra and geometry
can be understood by geometrically representing the equations. You will �nd a large number of
equations generating geometric patterns having interesting symmetries. We will select some of
them and plot here. Exploring them further is left as an exercise to the reader.3

4.5.1 Astroid

The astroid was �rst discussed by Johann Bernoulli in 1691-92. It also appears in Leibniz's corre-
spondence of 1715. It is sometimes called the tetracuspid for the obvious reason that it has four
cusps. A circle of radius 1/4 rolls around inside a circle of radius 1 and a point on its circumference
traces an astroid. The Cartesian equation is

x
2
3 + y

2
3 = a

2
3 (4.1)

The parametric equations are

x = a cos3(t), y = a sin3(t) (4.2)

In order to plot the curve in the Cartesian system, we rewrite equation 4.1 as

y = (a
2
3 − x 2

3)
3
2

The program astro.py plots the part of the curve in the �rst quadrant. The program astropar.py
uses the parametric equation and plots the complete curve. Both are shown in �gure 4.5

Example astro.py

import numpy as np

import matplotlib.pyplot as plt

a = 2

x = np.linspace(0,a,100)

y = (a**(2.0/3) - x**(2.0/3))**(3.0/2)

plt.plot(x,y)

plt.show()

3https://en.wikipedia.org/wiki/List_of_curves

CHAPTER 4. DATA VISUALIZATION 64

Figure 4.5: (a)Output of astro.py (b) astropar.py (c) lissa.py

Example astropar.py

import numpy as np

import matplotlib.pyplot as plt

a = 2

t = np.linspace(-2*a,2*a,101)

x = a * np.cos(t)**3

y = a * np.sin(t)**3

plt.plot(x,y)

plt.show()

4.5.2 Ellipse

The Cartesian equation of ellipse is
x2

a2
+
y2

b2
= 1 (4.3)

The parametric equations are

x = a cos(t), y = b sin(t) (4.4)

The program ellipse.py uses the parametric equation to plot the curve. Modifying the para-
metric equations will result in Lissajous �gures. The output of lissa.py are shown in �gure 4.5(c).

Example ellipse.py

import numpy as np

import matplotlib.pyplot as plt

a = 2

b = 3

t = np.linspace(0, 2 * pi, 100)

x = a * np.sin(t)

y = b * np.cos(t)

plt.plot(x,y)

plt.show()

Example lissa.py

import numpy as np

import matplotlib.pyplot as plt

a = 2

CHAPTER 4. DATA VISUALIZATION 65

Figure 4.6: (a)Archimedes Spiral (b)Fermat's Spiral (c)Polar Rose

b = 3

t= np.linspace(0, 2*np.pi,100)

x = a * np.sin(2*t)

y = b * np.cos(t)

plt.plot(x,y)

x = a * np.sin(3*t)

y = b * np.cos(2*t)

plt.plot(x,y)

plt.show()

The Lissajous curves are closed if the ratio of the arguments for sine and cosine functions is an
integer. Otherwise open curves will result, both are shown in �gure 4.5(c).

4.5.3 Spirals of Archimedes and Fermat

The spiral of Archimedes is represented by the equation r = aθ. Fermat's Spiral is given by
r2 = a2θ. The output of archi.py and fermat.py are shown in �gure 4.6.

Example archi.py

import numpy as np

import matplotlib.pyplot as plt

a = 2

th= np.linspace(0, 10 * np.pi,200)

r = a*th

plt.polar(th,r)

plt.axis([0, 2 * np.pi, 0, 70])

plt.show()

Example fermat.py

import numpy as np

import matplotlib.pyplot as plt

a = 2

th= np.linspace(0, 10 * np.pi,200)

r = np.sqrt(a**2 * th)

plt.polar(th,r)

plt.show()

CHAPTER 4. DATA VISUALIZATION 66

Figure 4.7: Spirograph.(a) mathematical basis (b) trajecory plot

4.5.4 Spirograph

Spirograph is a geometric drawing device that produces mathematical roulette curves of the variety
technically known as hypotrochoids and epitrochoids.4 Consider a �xed outer circle of radius R,
centered at the origin, and a smaller inner circle of radius r inside it, as shown in �gure4.7(a).
When the small circle rolls inside the big circle, the trajectory of a point located inside the small
circle at a distance ρ < R from it's center is given by the equations,

x(t) = R

[
(1− k) cos t+ lk cos

1− k
k

t

]
y(t) = R

[
(1− k) sin t+ lksin

1− k
k

t

]
where k = r

R ; l = ρ
r and t is the angle of rotation. The python code spiro.py plots the output

for some values of R, r and ρ .4.7(b). You may try changing the values of these parameters.

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(0, 10 * np.pi, 500)

r = 3.

R = 10.0

k = r/R

l = 1.4

x = R*((1-k)*np.cos(t) + l*k*np.cos((1-k)*t/k))

y = R*((1-k)*np.sin(t) - l*k*np.sin((1-k)*t/k))

plt.plot(x,y)

plt.show()

4.6 2D plot using colors

A two dimensional matrix can be represented graphically by assigning a color to each point pro-
portional to the value of that element. The program imshow1.py makes a 50 × 50 matrix �lled

4https://en.wikipedia.org/wiki/Spirograph
https://www.geeksforgeeks.org/fractal-using-spirograph-python

CHAPTER 4. DATA VISUALIZATION 67

Figure 4.8: Outputs of (a) imshow1.py (b) julia.py (c) mgrid2.py

with random numbers and uses imshow() to plot it. The result is shown in �gure 4.8(a).

Example imshow1.py

import numpy as np

import matplotlib.pyplot as plt

m = np.random.random([50,50])

plt.imshow(m)

plt.show()

4.6.1 Fractals

Fractals5 are a part of fractal geometry, which is a branch of mathematics concerned with irregular
patterns made of parts that are in some way similar to the whole (e.g.: twigs and tree branches).
A fractal is a design of in�nite details. It is created using a mathematical formula. No matter how
closely you look at a fractal, it never loses its detail. It is in�nitely detailed, yet it can be contained
in a �nite space. Fractals are generally self-similar and independent of scale. The theory of fractals
was developed from Benoit Mandelbrot's study of complexity and chaos. Complex numbers are
required to compute the Mandelbrot and Julia Set fractals and it is assumed that the reader is
familiar with the basics of complex numbers.

To compute the basic Mandelbrot (or Julia) set one uses the equation f(z) → z2 + c , where
both z and c are complex numbers. The function is evaluated in an iterative manner, ie. the result
is assigned to z and the process is repeated. The purpose of the iteration is to determine the
behavior of the values that are put into the function. If the value of the function goes to in�nity
(practically to some �xed value, like 1 or 2) after few iterations for a particular value of z , that
point is considered to be outside the Set. A Julia set can be de�ned as the set of all the complex
numbers (z) such that the iteration of f(z)→ z2 + c is bounded for a particular value of c.

To generate the fractal the number of iterations required to diverge is calculated for a set of
points in the selected region in the complex plane. The number of iterations taken for diverging
decides the color of each point. The points that did not diverge, belonging to the set, are plotted
with the same color. The program julia.py generates a fractal using a julia set. The program
creates a 2D array (200 x 200 elements). For our calculations, this array represents a rectangular
region on the complex plane centered at the origin whose lower left corner is (-1,-j) and the upper
right corner is (1+j). For 200x200 equidistant points in this plane the number of iterations are
calculated and that value is given to the corresponding element of the 2D matrix. The plotting is
taken care by the imshow function. The output is shown in �gure 4.8(b). Change the value of c
and run the program to generate more patterns. The equation also may be changed.

5http://en.wikipedia.org/wiki/Fractal

CHAPTER 4. DATA VISUALIZATION 68

Example julia.py

�'

Region of a complex plane ranging from -1 to +1 in both real

and imaginary axes is represented using a 2D matrix

having X x Y elements.For X and Y equal to 200,the step-size

in the complex plane is 2.0/200 = 0.01.

The nature of the pattern depends much on the value of c.

�'

import numpy as np

import matplotlib.pyplot as plt

X = 200

Y = 200

MAXIT = 100

MAXABS = 2.0

c = 0.02 - 0.8j # The constant in equation z**2 + c

m = np.zeros([X,Y]) # A two dimensional array

def numit(x,y): # number of iterations to diverge

z = complex(x,y)

for k in range(MAXIT):

if abs(z) <= MAXABS:

z = z**2 + c

else:

return k # diverged after k trials

return MAXIT # did not diverge,

for x in range(X):

for y in range(Y):

re = 0.01 * x - 1.0 # complex number for

im = 0.01 * y - 1.0 # this (x,y) coordinate

m[x][y] = numit(re,im) # get the color for (x,y)

plt.imshow(m) # Colored plot using the 2D matrix

plt.show()

The fern is one of the basic examples of self-similar sets, a mathematically generated pattern that
can be reproducible at any magni�cation or reduction.(Fern). The program fern.py listed below
generates a pattern as shown in the �gure4.9(b).

import numpy as np

import matplotlib.pyplot as plt

NP = 2000000

x = np.zeros(NP)

y = np.zeros(NP)

for i in range(0, NP-1):

p = np.random.randint(1, 100)

if p == 1:

x[i+1] = 0

y[i+1] = 0.16*y[i]

if p >= 2 and p <= 86:

x[i+1] = 0.85*x[i] + 0.04*y[i]

https://en.wikipedia.org/wiki/Barnsley_fern

CHAPTER 4. DATA VISUALIZATION 69

Figure 4.9: a)Julia fractal b)Barnsley Fern

y[i+1] = -0.04*x[i] + 0.85*y[i]+1.6

if p >= 87 and p <= 93:

x[i+1] = 0.2*x[i] - 0.26*y[i]

y[i+1] = 0.23*x[i] + 0.22*y[i]+1.6

if p >= 94 and p < 99:

x[i+1] = -0.15*x[i] + 0.28*y[i]

y[i+1] = 0.26*x[i] + 0.24*y[i]+0.44

plt.scatter(x, y, s = 0.2, c ='#5dbb63')

plt.show()

4.7 3D Plots

Matplotlib may not be the best tool for 3D plotting but your existing knowledge about plotting
2D graphs can be extended to several types of 3D plots, using the mplot3d toolkit. The Axes3D
class is used for making the 3D plots. First a matplotlib Figure object (representing your entire
plot window) is created. Under this one or more Axes objects are created using the add_subplot()
method. Inside the Axes object, the drawing objects are created using the methods like plot() etc.
The example below demonstrates the procedure.

4.7.1 3D Line Plots

Example of a line plot is shown in line3d.py along with the output in �gure 4.7.3(b).

Example line3d.py

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

z = np.linspace(0, 10, 10)

x = z

y = z

fig = plt.figure()

ax = fig.add_subplot(projection = '3d')

CHAPTER 4. DATA VISUALIZATION 70

ax.plot3D(x,y,z)

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_zlabel('Z')

ax.scatter3D(x,y,-z)

plt.show()

The result is a straight line starting from the origin to the point (10,10,10) and ten points where
the value of 'z' goes from 0 to -10.

4.7.2 Meshgrids

in order to make contour and surface3D plots, we need to understand the concept of meshgrid.
Consider a rectangular area on the X-Y plane. Assume there are m divisions in the X direction
and n divisions in the Y direction. We now have a m×n mesh. A meshgrid is the coordinates of a
grid in a 2D plane, x coordinates of each mesh point are held in one 2D matrix and y coordinates
are held in another.

The NumPy function meshgrid() creates two 2x2 matrices from two 1D arrays, as shown in the
example below. This can be used for plotting surfaces and contours, by assigning a Z coordinate
to every mesh point.

Example mgrid1.py

import numpy as np

x = np.arange(0, 3, 1)

y = np.arange(0, 3, 1)

gx, gy = np.meshgrid(x, y)

print gx

print gy

The outputs are as shown below, gx(i,j) contains the x-coordinate and gx(i,j) contains the y-
coordinate of the point (i,j).

[[0 1 2]
[0 1 2]
[0 1 2]]
[[0 0 0]
[1 1 1]
[2 2 2]]
We can evaluate a function at all points of the meshgrid by passing the meshgrid as an argument.

The program mgrid2.py plots the sum of sines of the x and y coordinates, using imshow to get a
result as shown in �gure 4.8(c).

Example mgrid2.py

from pylab import *

x = arange(-3*pi, 3*pi, 0.1)

y = arange(-3*pi, 3*pi, 0.1)

xx, yy = meshgrid(x, y)

z = sin(xx) + sin(yy)

imshow(z)

show()

CHAPTER 4. DATA VISUALIZATION 71

Output of (a)surface3d.py (b)line3d.py

4.7.3 Surface3D Plots

The example mgrid2.py is re-written to make a surface plot using the same equation in surface3d.py
and the result is shown in �gure 4.7.3(a).

Example sufrace3d.py

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = fig.add_subplot(projection = '3d')

x = np.linspace(-10, 10, 100)

y = np.linspace(-10, 10, 100)

xx, yy = np.meshgrid(x, y)

z = xx ** 2 + yy **2 # also try with z = sin(xx) + sin(yy)

ax.plot_surface(xx, yy, z, cmap=plt.cm.jet, cstride=1)

plt.show()

4.7.4 Spherical harmonics

The spherical harmonics are the angular portion of the solution to Laplace's equation in spherical
coordinates where azimuthal symmetry is not present. Program ylm.py plots the spherical har-
monics Y lm and modulates the radius using it's value. The output is shown in �gure4.10. It may
be repeated with other l and m values

Example ylm.py

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import cm, colors

from mpl_toolkits.mplot3d import Axes3D

from scipy.special import sph_harm

phi = np.linspace(0, np.pi, 100)

theta = np.linspace(0, 2*np.pi, 100)

phi, theta = np.meshgrid(phi, theta)

l = 1 # repeat for different l,m combinations

CHAPTER 4. DATA VISUALIZATION 72

Figure 4.10: Output of ylm.py

m = 0

realSH = (sph_harm(m, l, theta, phi).real)**2

radius = realSH # Modulate the radius to visualize

x = radius * np.sin(phi) * np.cos(theta)

y = radius * np.sin(phi) * np.sin(theta)

z = radius * np.cos(phi)

fig = plt.figure(figsize=plt.figaspect(1.))

ax = fig.add_subplot(projection = '3d')

ax.plot_surface(x, y, z)

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_zlabel('Z')

plt.show()

4.7.5 Animating 3D plots

The program anim-line3d,py listed below changes the viewing angle of a 3D lineplot, within the
animation routine, to generate a continuously rotating image. The elevation and azimuth angle
are updated.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation as fa

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = fig.add_subplot(projection = '3d')

z = np.linspace(0, 20, 100)

x = np.sin(z)

y = np.cos(z)

ax.axis('off')

ax.plot3D(x,y,z)

def animate(phi):

ax.view_init(phi, phi) #both elevation and azimuth updated

CHAPTER 4. DATA VISUALIZATION 73

anim = fa(fig, animate, frames=360, interval=10)

plt.show()

4.8 Exercises

1. Plot a sine wave using markers +, o and x using three di�erent colors.

2. Plot tan θ from θ from −2π to 2π, watch for singular points.

3. Plot a circle using the polar() function.

4. Generate a triangular wave using Fourier series.

5. Evaluate y =
∑n=∞
n=1

(−1)nx2n+1

(2n+1)! for 10 terms.

6. Write a Python program to calculate sine function using series expansion and plot it.

7. Write a Python program to plot y = 5x2 + 3x + 2 (for x from 0 to 5, 20 points), with axes
and title. Use red colored circles to mark the points.

8. Write a Python program to plot a Square wave using Fourier series, number of terms should
be a variable.

9. Write a Python program to read the x and y coordinates from a �le, in a two column format,
and plot them.

10. Plot x2 + y2 + z2 = 25 using matplotlib 3D.

11. Make a plot z = sin(x) + sin(y) using imshow() , from −4π to 4π for both x and y.

12. Write Python code to plot y = x2, with both the axes labeled.

13. Plot the following curves

(a) r2 = a2 cos 2θ

(b) y =
√

2πe−x
2/2

(c) a cosh(x/a)

(d) sin(aθ) for a = 2, 3, and 4

14. Plot x = a
√
2 cos θ

sin2 θ+1
, y = a

√
2 cos θ sin θ
sin2 θ+1

for di�erent values of a

15. Plot the curves described on https://www.matematica.pt/en/useful/list-curves.php6

6You may manipulate the equations to express y in terms of x. Otherwise search the curve by name and you
will �nd it listed in the parametric form. Use that for plotting.

Chapter 5

Symbolic Computation, SymPy

Before computers appeared on the scene, problem solving usually consisted of solving the rele-
vant algebraic equations and evaluating the results by numerical computation. The variables are
substituted with their numeric values in the �nal stage of the calculation. With the advent of
computers, it bacame possible to tackle problems lacking analytic solutions also, by using various
numerical methods. Numerical computation uses �oating point representation of numbers, which
is not exact. The precesion depends on the number of bits used for representing one number. Re-
peated arithmetic operations result in accumulated errors, a�ecting the accuracy of the results. In
spite of these di�culties, numerical methods have made highly impressive contributions to various
branches of science and engineering. Modern computers made numerical calculations much easier
and it became commonplace to do enormous calculations, which in some cases made it possible to
avoid laborious algebraic manipulations. As a result, scientifc computation become synonymous
with numerical computation.

The advances in symbolic computation software is making the symbiosis between symbolic and
numeric computation possible again. The principal focus is on restating algebraic formulas and
methods in a form suitable for the problem at hand, so that the eventual numeric computation
can be cheaper, more accurate, and less sensitive to errors. Symbolic computation aims at the
automation of the steps of mathematical problem solving that precede evaluating numerical models
and that, to a large extent, are still the domain of human problem solvers. Used together, symbolic
and numeric computation enhance each other.

To illustrate the di�erence that can be made by Symbolic Computation, let us take a simple
example of �nding the area under a curve using integration. We will use the equation of a circle

y =
√
r2 − x2 (5.1)

We assume unit radius and the area under the curve from x = 0 to x = 1 can be obtained
by integrating the equation 5.1. This has been explained in section 7.3.2 on Simpson's 1/3-Rule.
In this case we already know the analytical result given by A = πr2/4=0.7853981633974483. The
area calculated using Simpson's 1/3 rule (area divided into 100 slices) is 0.7852833013348068. The
error is around 0.015 percent.

Analytical solutions are better (if one is available) but doing them manually is tedius and er-
ror prone. This is were Symbolic Computation becomes useful. Symbolic computation software
uses algorithms to manipulate the symbols representing mathematical objects. The symbols in-
clude the usual representation systems for numbers like the integers and rationals. But it also
includes polynomials, rational and trigonometric functions, algebraic numbers, groups, ideals, and
tensors, among others. In fact, it is possible, in theory, to carry out any heuristic or algorithmic

74

CHAPTER 5. SYMBOLIC COMPUTATION, SYMPY 75

computational method. Typically, the computations are carried out exactly.
Again getting back to the problem of �nding the area of the circle, we use the following lines

of code uses the SymPy package to perform the Symbolic Computation.

import sympy as sp

x,y = sp.symbols('x y')

y = sp.sqrt(1 - x**2)

4 * sp.integrate(y, (x, 0, 1))

The result is π and SymPy supports evaluating it upto 100 decimal places.
The previous example had a very easy analytic solution. We may try y = −x2, which is slightly

more di�cult than the circle.

import sympy as sp

x,y = sp.symbols('x y')

y = sp.exp(-x**2)

sp.plot(y, (x, -2, 2))

sp.integrate(y, (x,-2,2))

The result is shown below.

sp.integrate(y, (x,-2,2)).evalf()

gives a value of 1.76416278152484
Even though the symbolic integration gave accurate results, the symbolic computation code

seems to be taking much more time. The comparison is given in the �gure below.

CHAPTER 5. SYMBOLIC COMPUTATION, SYMPY 76

Symbolic computation allows for precise and general solutions, o�ering insights into the nature
of mathematical structures and relationships without the inaccuracies introduced by numerical
methods. In numerical computation, we de�ne variables, assign values to them and them perform
various arithmetic and logical operations on them. The resolution of the assigned value is limited
by the size of the storage used by the variable. We can demonstrate it by the following example.

from math import *

x = sqrt(3)

print (x*x) # This prints 2.9999999999999996

We could avoid this by storing the variables as symbols and perform the evaluation at the �nal
stage. Symbolic computation (also known as the computer algebra system) is a solution for this
issue. The mathematical objects are represented exactly, not approximately, and mathematical
expressions with unevaluated variables are left in symbolic form.

5.1 The SymPy Module

SymPy is a full featured computer algebra system (CAS) written in the Python programming lan-
guage. SymPy does not invent its own programming language. Python itself is used both for the
internal implementation and end user interaction. It supports a wide range of mathematical facil-
ities. These include functions for assuming and deducing common mathematical facts, simplifying
expressions, performing common calculus operations, manipulating polynomials, solving equations,
representing symbolic matrices and , pretty printing of expressions. SymPy has strong support
for arbitrary precision numerics, backed by the mpmath package. Since SymPy is available as a
Python library, it is possible to combine it with other packages like Numpy, Scipy etc. if required.

CHAPTER 5. SYMBOLIC COMPUTATION, SYMPY 77

The following sections brie�y explain the SymPy features like simpli�cation, integration and
di�erentiation of algebraic equations.1

5.2 Symbols

In SymPy, variables are not de�ned automatically. Variables are de�ned using symbols in SymPy,
they must be de�ned before they are used.

import sympy as sp

sp.symbols('x y') # define two symbols, x and y

x = sp.sqrt(3)

print(x, x*x)

this will print

sqrt(3) 3

� The variable 'x' is stored a a symbol. Here
√

3 is stored as a symbol, not as a number.
Taking the square root then squaring does not introduce any loss of accuracy, as in the case
of numeric computation.

5.3 Formatting the Output

There are several ways to format the output, mostly the mathematical expression. The function
init_printing() is used for selecting the formats, but the user interface also should support the
formatting. The examples given below demonstrates some of the methods.

import sympy as sp

x,y = sp.symbols('x y')

print(sp.sqrt(x)) # the output is: sqrt(x)

This kind of plain text output is supported by the Python Interpreter and all IDEs. Under Jupyter
Notebook, the equations are formatted better.

import sympy as sp

x,y = sp.symbols('x y')

sp.sqrt(x) # The output is shown as
√
x

A screenshot of the Jupyter Notebook output is shown below.

1SymPy Documentationhttps://docs.sympy.org/latest/tutorials/intro-tutorial/features.html

https://docs.sympy.org/latest/tutorials/intro-tutorial/features.html

CHAPTER 5. SYMBOLIC COMPUTATION, SYMPY 78

5.4 Simpli�cation

Sympy is capable of simplifying algebraic expressions according to the rules of algebra. SymPy has
several functions to perform various kinds of simpli�cation, and also one general function called
simplify() that attempts to choose an appropriate function to arrive at the simplest form of an
expression.

5.4.1 Expand

The function expand() is demonstrated using some example. It can be seen that expand() also can
result in simpli�cation due to cancellation.

5.4.2 Factor

factor() convets a polynomial into it's irreducible form, as shown in the example below.

5.4.3 collect

This function collects common powers of a term in an expression, as shown in the examples below.

5.5 Calculus

Sympy is capable of performing operations like derivatives, integrals, limits, and series expansions.
Several examples are shown below.

CHAPTER 5. SYMBOLIC COMPUTATION, SYMPY 79

5.5.1 di�erentiation

di�() takes the expression and the variable as shown below.

If there is only one variable in the expression, it is taken by default. When there are more than
one variables, we need to specify the variable to be used for di�erentiation, as demonstrated below.

Di�erentiating multiple times can be speci�ed in two di�erent ways. The number of times the
di�erentiation is to be performed may be given as the third argument. Another way is to specify
the variable so many times as argument. The former method seems to be better.

To get an unevaluated derivative, use the Derivative() function. The function doit() may be
used to evaluate the result.

Di�erentiating with multiple variables can be carried out in a single step. In the example given
below exyis di�erentiated with respect to x and the result is again di�erentiated with respect to y.

CHAPTER 5. SYMBOLIC COMPUTATION, SYMPY 80

The same result is obtained by performing both of them in a single step.

You may use the expand() to make the results look identical.

5.5.2 Integration

To compute an inde�nite integral, pass the variable after the expression as shown below. This
function does not include the constant of integration.

To compute a de�nite integral, the second argument should be a tuple like (variable, lower_limit,
upper_limit). A couple of examples are given below. In�nity is represented by 'oo' in the Sympy
module.

We can create an unevaluated integral using Integral(), and evaluate the result by calling doit().
An example is given below.

CHAPTER 5. SYMBOLIC COMPUTATION, SYMPY 81

You may try several examples from https://en.wikipedia.org/wiki/List_of_integrals_

of_exponential_functions.

5.5.3 Numeric Integration

We have seen several examples of symbolic integration using Sympy. It also supports numeric
integration. It uses the 'mpmath' library to give very high precision, the number of decimal places
can be speci�ed.

https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions
https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions

Chapter 6

Introduction to Pandas

We have seen that NumPy handles homogeneous numerical array data. Pandas is designed for
working with tabular or heterogeneous data, like contents of a spreadsheet. Pandas shares many
coding idioms from NumPy. To get started with pandas, we need to be familiar with it's two main
data structures; Series and DataFrame.

6.1 Series

We have seen that the elements of a one dimensional array, of N elements, is indexed using integers
ranging from 0 to N-1. A Pandas Series data type can be considered as an extension to this, where
the indices also can be speci�ed. If not speci�ed it takes the default, integers ranging from 0 to
N-1.

We can create a Pandas Series using;

import pandas as pd

ser = pd.Series([4, 12, 55, 100])

print (ser)

Gives the output,

0 4

1 12

2 55

3 100

dtype: int64

The �rst column is the indices and the second column are the values. It looks very similar to a
column in a spreadsheet. We can specify the indices also as shown below.

import pandas as pd

ser = pd.Series([4, 12, 55, 100], index=['a', 'b', 'c', 'd'])

print (ser)

Gives the output,

a 4

b 12

82

CHAPTER 6. INTRODUCTION TO PANDAS 83

c 55

d 100

dtype: int64

Another way to think about a Series is as a �xed-length, ordered dictionary, as it is a mapping of
index values to data values. . A dictionary consists of key:value pairs, and the keys are used for
indexing the coresponding values. You can create a Series from a dictionary

d = {'b':12, 'a':23, 34:3000, 'a':230} # A dictionary

s = pd.Series(d)

print (s)

The output is

b 12

a 230

34 3000

dtype: int64

You may note that the duplicate entry of index 'a' has been removed, and the latest value (230)
has prevailed. This is the behavior of Dictionary. Pandas Index can contain duplicate labels,
as demonstrated below.

import pandas as pd

ps = pd.Series([4, 7, -5, 3], index=['d', 'a', 'a', 'c'])

print(ps)

Gives the output

d 4

a 7

a -5

c 3

dtype: int64

It can be seen that the index 'a' is appearing twice. Pandas supports non-unique index values.
If an operation that does not support duplicate index values is attempted, an exception will be
raised at that time.

Index of a Series can be altered in-place by assignment. The exact number of indices should
be given.

ser = pd.Series([10, 20])

ser.index = ['a', 'b']

print (ser)

prints the following. The default indices 0 and 1 are replaced by 'a' and 'b' respectively.

a 10

b 20

dtype: int64

CHAPTER 6. INTRODUCTION TO PANDAS 84

Reindexing

It is possible to re-index a Series. This may alter the number of indices also. The relation between
an index and the corresponding value will be preserved during this operation.

import pandas as pd

ser = pd.Series([10, 20], index =['a', 'b'])

ser = ser.reindex(['b', 1, 2])

print (ser)

The result is

b 20.0

1 NaN

2 NaN

dtype: float64

It can be seen that the value corresponding to the old index 'b' is preserved. The new indices 1 and
2 are assigned with a NaN (Not a Number) value. The function isnull() tests for the NA values.
A key di�erence between Series and ndarray is that operations between Series automatically align
the data based on index.

print (pd.isnull(ser))

prints

b False

1 True

2 True

dtype: bool

Series automatically aligns by index label in arithmetic operations, as demonstrated below.

s1 = pd.Series([10, 20, 30,40], index =[0,1,2,3])

s2 = pd.Series([12, 13, 14], index =[1,2,3])

s = s1 + s2

print (s)

The output is given below. The result of an operation between unaligned Series will have the union
of the indexes involved. If a label is not found in one Series or the other, the result will be marked
as NaN.

0 NaN

1 32.0

2 43.0

3 54.0

dtype: float64

Index 0 and the corresponding value are available in s1. But they are missing in s2, so the addition
of 10 and a non-existant value results in a NaN value. Values corresponding to the other three
indices are added. Data always align with the index.

Using NumPy functions or NumPy-like operations, such as �ltering with a boolean array, scalar
multiplication, or applying math functions, will also preserve the index-value link. The default
result of operations between di�erently indexed objects yield the union of the indexes in order to
avoid loss of information. You have the option of dropping labels with missing data via the dropna
function.

CHAPTER 6. INTRODUCTION TO PANDAS 85

print (s.dropna())

1 32.0

2 43.0

3 54.0

dtype: float64

Name attribute

Both the Series object itself and its index have a name attribute.

s = pd.Series([34, 56], index = ['John', 'Ravi'], name='ages')

s.index.name = 'names'

print (s.name)

print (s.index.name)

prints

ages

names

6.2 DataFrame

A DataFrame represents a tabular, spreadsheet-like data structure containing an ordered collection
of columns, each of which can be a di�erent data type. It has both a row and column index.

Dataframe can be considered as a more �exible version of a 2D array. Unlike the Numpy 2D
array, the data need not be of the same type and the row and column indices are not restricted to
the 0 to N-1 range. DataFrames can be created in several di�erent ways.

6.2.1 From a Numpy array

We can make a Pandas Dataframe object from a Numpy 2D Array, by adding the column names
and the index, as shown in the example program array-df.py.

import numpy as np

import pandas as pd

data = np.arange(12).reshape(3,4)

df = pd.DataFrame(data, columns=["A", "B", "C", "D"], index = ['a','b','c'])

print(df)

The result is shown below.

CHAPTER 6. INTRODUCTION TO PANDAS 86

A B C D

a 0 1 2 3

b 4 5 6 7

c 8 9 10 11

6.2.2 From a Dictionary of Series

Dataframe can created by combining Pandas Series objects, each of them making a column of
the resulting Dataframe. The program ser-df.py is listed below. We create a Python Dictionary
where the keys are the column names and the values are the Series objects.

import numpy as np

import pandas as pd

s1 = pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"])

s2 = pd.Series([1.0, 2.0, 3.0, 4.0], index=["a", "b", "c", "d"])

d = { "one": s1, "two": s2 }

df = pd.DataFrame(d)

print (df)

will print

one two

a 1.0 1.0

b 2.0 2.0

c 3.0 3.0

d NaN 4.0

It can be seen that each column is made from a Series, where the keys become the column names.
A union of all the Series indices becomes the DataFrame index column. If any Series is missing an
index, the corresponding value is assigned a NaN. The data is arranged based on the index values.
later on we will see that the same behavior is followed while combining two Dataframes also.

6.2.3 From a Dictionary of Lists/Arrays

d = {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}

df = pd.DataFrame(d, index = ['a', 'b', 'c', 'd'])

print (df)

will print

one two

a 1.0 4.0

b 2.0 3.0

c 3.0 2.0

d 4.0 1.0

Number of elements in all the lists/arrays in the dictionary should match with the number of
elements in the index list. The value from each dictionary item forms a column with it's key as
the label. The values can be arrays or lists.

CHAPTER 6. INTRODUCTION TO PANDAS 87

6.2.4 Loading and Saving CSV format �les

Most of the time Pandas will be used for analysing data stored in some �les. A popular format
is CSV (comma separated values). All spreadsheet programs can save data in this format. Being
in text form, we can examine it with any txt editor program. First we will generate a Dataframe
from a Numpy 2D array and save it to a �le. This �le will be loaded for demonstrating subsequent
operations. The example df-csv.py demonstrates saving a DataFrame to a �le in CSV format.

import numpy as np

import pandas as pd

df1 = pd.DataFrame(np.arange(20).reshape(5,4), columns=["A", "B", "C", "D"])

df1.index = ['a','b','c','d','e']

df1.index.name = 'I'

df1.to_csv('data.csv')

The following program loads the CSV data and prints it.

import pandas as pd

df = pd.read_csv('data.csv')

print (df)

If you open the �le 'data.csv' with a text editor, it will look like,

I,A,B,C,D

a,0,1,2,3

b,4,5,6,7

c,8,9,10,11

d,12,13,14,15

e,16,17,18,19

But the output of the program is like,

I A B C D

0 a 0 1 2 3

1 b 4 5 6 7

2 c 8 9 10 11

3 d 12 13 14 15

4 e 16 17 18 19

While reading the CSV �le a new index column has been added. To avoid this, we need to specify
the index column, as shown in the code fragment below.

df = pd.read_csv('data.csv',index_col ='I')

print (df)

6.2.5 Index and Column Properties

Pandas Dataframe allows identical names for more than one column. The same is true for row
indices also, as shown in the example below. Index also has a name attribute.

df = pd.DataFrame(np.arange(20).reshape(5,4), columns=["A", "A", "C", "D"])

df.index = [1,2,2,3,4]

df.index.name = 'I'

print(df)

CHAPTER 6. INTRODUCTION TO PANDAS 88

will print

A A C D

I

1 0 1 2 3

2 4 5 6 7

2 8 9 10 11

3 12 13 14 15

4 16 17 18 19

6.2.6 Column Operations

In the examples given below, we will be using the DataFrame loaded from the �le 'data.csv', saved
earlier. Add the �rst two lines of the following to all the example code fragments.

import pandas as pd

df = pd.read_csv('data.csv',index_col ='I')

print(df)

The output is shown below.

I A B C D

a 0 1 2 3

b 4 5 6 7

c 8 9 10 11

d 12 13 14 15

e 16 17 18 19

Selecting a Column

print (df['A']) # df.A also works, if column has a valid Python variable name

The output is a Pandas Series.

a 0

b 4

c 8

d 12

e 16

Name: A, dtype: int64

More than one column can be selected by passing the required column names in a list.

print (df[['A','B']])

Applying conditions

print (df['A'] > 7)

will print a Series of Booleans, showing the result of the comparison for each element in the column.

CHAPTER 6. INTRODUCTION TO PANDAS 89

a False

b False

c True

d True

e True

Name: A, dtype: bool

The expression

print (df[df['A'] > 7])

prints only the rows of the Dataframe that satis�es the condition.

I A B C D

c 8 9 10 11

d 12 13 14 15

e 16 17 18 19

print(df.query('A > 7')) also gives the same result.

Adding a new column

We can create new columns from existing ones or using new data values. Assigning a column that
doesn't exist will create a new column. Assigning scalar values will result in propagating it to all
the rows.

df['E'] = df.A + df.B # df.E doesn't work on the left side

df['flag'] = df.B > 9

print(df)

The output will look like

I A B C D E flag

a 0 1 2 3 1 False

b 4 5 6 7 9 False

c 8 9 10 11 17 False

d 12 13 14 15 25 True

e 16 17 18 19 33 True

New columns can also be created using the assign() function, as shown below. This function returns
a new DataFrame without modifying the existing one.

ndf = df.assign(ratio = df['one']/ df['two'])

Deleting/Extracting a column

The del keyword will delete columns as with a dict. You can also pop it out in to a new Series.

del df['A'] # deletes the column 'A'

s1 = df.pop('A') # transfers it to a series, copies the index.

print (s1)

will print

CHAPTER 6. INTRODUCTION TO PANDAS 90

I

a 0

b 4

c 8

d 12

e 16

Name: A, dtype: int64

6.2.7 Indexing and Slicing Rows

Extracting a row from a DataFrame also results in a Series.

print (df.loc['b'])

will print

A 4

B 5

C 6

D 7

Name: b, dtype: int64

Use loc while indexing rows using it's name, use iloc while using the row number. The extracted
row is a Series and printed in the column format. print (df.iloc[1]) also gives the same result.

Slicing of a Dataframe is done using;

print (df[1:3])

print (df.iloc[1:3]) # also works

Conditional selection or rows

We can use the query() function to conditionally select rows in to a new DataFrame

print(df.loc[df['A'] > 10])

prints

I A B C D

d 12 13 14 15

e 16 17 18 19

The query() and assign() functions can be combined to create a new DataFrame as shown below.

ndf = df.query('A > 10').assign(ratio = df['A']/ df['B'])

print(ndf)

DataFrame. The output is;

I A B C D ratio

d 12 13 14 15 0.923077

e 16 17 18 19 0.941176

Rows satisfying the conditions are selected and a new column is added.

CHAPTER 6. INTRODUCTION TO PANDAS 91

Adding a Row

The following code fragment creates a DataFrame and then adds rows and columns to it

import pandas as pd

df = pd.read_csv('data.csv',index_col ='I')

df.loc['new'] = [10,20,30,40] # add new row

print(df)

The output is shown below. Rows 'd' and 'e' were added. Column 'E' also added after that. The
number of elements of the added element should match the existing dimensions.

I A B C D

a 0 1 2 3

b 4 5 6 7

c 8 9 10 11

d 12 13 14 15

e 16 17 18 19

new 10 20 30 40

6.2.8 Concatenating DataFrames

The concat() function concatenates an arbitrary amount of Series or DataFrame objects along an
axis. The example below shown concatenating DataFrames. The indexing of the result is controlled
by a �ag.

import numpy as np

import pandas as pd

d1 = np.arange(6).reshape(2,3)

d2 = np.arange(100,106).reshape(2,3)

df1 = pd.DataFrame(d1, columns=["A", "B", "C"], index = ['a','b'])

df2 = pd.DataFrame(d2, columns=["D", "E", "F"], index = ['b','c'])

print(df1)

print(df2)

The two resulting Dataframes are printed below.

A B C

a 0 1 2

b 3 4 5

D E F

b 100 101 102

c 103 104 105

The following line of code concatenates the two Dataframes along some axis.

df = pd.concat([df1,df2], axis=1, sort =False)

print(df)

The result is shown below. The

CHAPTER 6. INTRODUCTION TO PANDAS 92

A B C D E F

a 0.0 1.0 2.0 NaN NaN NaN

b 3.0 4.0 5.0 100.0 101.0 102.0

c NaN NaN NaN 103.0 104.0 105.0

It can be seen that all the columns of both the inputs are present in the result when 'axis=1'. If
a particular index is missing in an input the corresponding cells are �lled with 'NaN' values.

Data alignment and arithmetic

When doing an operation between DataFrame and Series, the default behavior is to align the Series
index on the DataFrame columns. The lines given below make two DataFrames, df1 has 4 columns
and �ve rows, and df2 has 3 columns and 3 rows.

df1 = pd.DataFrame(d1, columns=["A", "B", "C"], index = ['a','b'])

df2 = pd.DataFrame(d2, columns=["A", "B", "F"], index = ['b','c'])

print(df1)

print(df2)

The result is shown below

A B C

a 0 1 2

b 3 4 5

A B F

b 100 101 102

c 103 104 105

The following addition operation

df = df1 + df2

results in

A B C F

a NaN NaN NaN NaN

b 103.0 105.0 NaN NaN

c NaN NaN NaN NaN

The addition of elements takes place only where elements from both the Frames are present.
Wherever the operation is not possible, is �lled with a NaN value.

6.3 Practical Examples

A couple of examples demonstrating the capabilities of Pandas are given below.

6.3.1 Temperature Data

Monthly average temperature from 1901 to 2017 is available from the IMD website. Several data
�les are available at

CHAPTER 6. INTRODUCTION TO PANDAS 93

https://data.gov.in/catalog/all-india-seasonal-and-annual-temperature-series

One of them (contains the monthly average temperature from the year 1901 to 2017) has been
downloaded and kept at https://scischool.in/TempDataIMD.csv, after removing some columns
that we are not interested in. The following lines of code gets the data into a Pandas Dataframe
and saves a �le named 'temp.csv'. You may open it with any spreadsheet program. While loading
the �le we have set the 'YEAR' column as the index.

import pandas as pd

df = pd.read_csv('https://scischool.in/TempDataIMD.csv', index_col = 'YEAR')

df.to_csv('temp.csv')

The data above shows the monthly average temperatures from 1901 to 2017. Our objective is to
draw some conclusions from this data, like global warming is real. It make sense to set the YEAR
column as the index.

We can plot any column to �nd out how the temperature of a particular month varied over the
years. Or we can plot the same for more than one selected months.

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read_csv('temp.csv', index_col = 'YEAR') # Now read from the local CSV file

df[['MAY','FEB']].plot()

plt.show()

Variation of temperature for any selected year can be plotted using

df.loc[2000].plot()

plt.show()

https://scischool.in/TempDataIMD.csv

CHAPTER 6. INTRODUCTION TO PANDAS 94

Comparing the temperature variations for a given month (for two di�erent years) can be ob-
tained by

df.loc[[2000,2003]].T.plot()

to get

Taking the transpose makes it a two column dataframe. We can see that the average temper-
ature has increased over the years and the di�erence is less during June-July.

We can ignore the monthly variations and plot the mean temperature over the years, using the
code

ax = df.T.mean().plot()

ax.set_ylabel("Mean Temperature")

plt.show()

CHAPTER 6. INTRODUCTION TO PANDAS 95

6.3.2 Electoral bond data

Nowadays almost all are familiar with the Electoral Bonds. As per court order the State Bank
of India gave the data to ECI and it is available on the ECI website https://www.eci.gov.in/

disclosure-of-electoral-bonds. It consists of two �les in PDF format. (1) The details of the
bond purchasers. (2) The details of the parties who encashed the bonds. Each bond has a unique
alphanumeric code. The PDF �les have been converted into CSV format and made available on
the website 'scischool.in'. The following lines of Python code performs the matching of the two sets
of data to �gure out 'who gave bonds to whom' (a task that would take three and a half months
as per the estimate of SBI !). You may download the CSV �les to your computer and modify the
code accordingly.

import numpy as np

import pandas as pd

pdf = pd.read_csv('https://scischool.in/ebond/eb-purchased.csv', index_col = 'ANcode')

rdf = pd.read_csv('https://scischool.in/ebond/eb-encashed.csv', index_col = 'ANcode')

df = pd.concat([pdf, rdf], axis=1, sort = True)

The two line below displays the amount (in Crores) given by a particular company to di�erent
political parties.

firm = df[df['Name of the Purchaser'].str.contains('Megha Eng', na = False, case = False)]

print(firm.groupby(by='Name of the Political Party')['Amount received'].sum().nlargest(5))

The result of this code is shown below.
BHARATIYA JANATA PARTY 584.0
BHARAT RASHTRA SAMITHI 195.0

https://www.eci.gov.in/disclosure-of-electoral-bonds
https://www.eci.gov.in/disclosure-of-electoral-bonds

CHAPTER 6. INTRODUCTION TO PANDAS 96

DRAVIDA MUNNETRA KAZHAGAM (DMK) 85.0
YSR CONGRESS PARTY (YUVAJANA SRAMIKA RYTHU CONGRESS PARTY) 37.0
TELUGU DESAM PARTY 28.0
This example demonstrates how Python can be used for handling complex problems in a very

simple manner.
If you want to learn Python and Pandas systematically try downloading the book Python-for-

Data-Analysis by Wes mcKinney, from this link https://bedford-computing.co.uk/learning/

wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf. In case the link doesn't work
search �Python-for-Data-Analysis Wes mcKinney pdf� to �nd other sources.

https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf

Chapter 7

Numerical methods

Numerical analysis is the area of mathematics and computer science that creates, analyzes, and
implements algorithms for solving the problems of continuous mathematics numerically. Solving
mathematical equations is an important requirement for various branches of science for several
reasons. Many equations evade an analytic solution and in some cases the input could be numerical
data from an experiment. Even when we have an analytical solution, for all practical purposes we
need to evaluate the numeric value of the result, with the desired accuracy.

Numerical solution of systems of linear or non-linear equations, di�erential or integral equations,
interpolation etc., are some of the major applications. In this book, we are not going in to the
theoretical details but will focus on developing simple working programs to illustrate the concept.
Detailed theory of numerical analysis can be found in text books.1Since the Taylor series and the
polynomial interpolation forms the mathematical basis of many numerical methods, we start with
a brief introduction of them.

It should be noted that almost all the example programs given in this chapter are for learning
purpose only. They can be made much smaller and e�cient by using library functions from numpy
or scipy. You may cross check the results of you code with the output of standard library functions.

7.1 Taylor's Series

All of you are familiar with the sine function, starting from the high school days. You know how
to di�erentiate it, integrate it and do so many other things with it. Now, how do we �nd the value
of sin(θ), where θ = 100, without using the tables or a calculator. The childhood friend becomes
a bit unfamiliar at this point, I guess. But we know the value of sin(θ) and all it's derivatives
at θ = 0. Suppose we know the position, velocity and acceleration of a car at some point t = t0,
we can calculate it's position after a time interval ∆t . The situation is similar in the case of
sin(100)also, we use something called the Taylor series.

The Taylor series provides an algorithm for connecting the value of a function at two points to
the derivatives that function. If a function and its derivatives are known at some point x = x0, we
can express f(x) in the vicinity of that point using a polynomial. The Taylor series expansion is
given by,

f(x) = f(x0) + (x− x0)f
′
(x0) +

(x− x0)2

2!
f

′′
(x0) + · · ·+ (x− x0)n

n!
fn(x0) (7.1)

1Introductory methods of numerical analysis by S.S.Sastry.

97

CHAPTER 7. NUMERICAL METHODS 98

In the case of f(x) = sin(θ) , we know that f(0) = 0. The other terms involve the derivatives
of sin(x). The �rst, second and third derivatives of sin(x) are cos(x), −sin(x) and −cos(x),
respectively. Evaluating each of these at zero, we get 1, 0 and -1 respectively. The terms with even
powers vanish. taking x0 = 0, results in,

sin(x) = x− x3

3!
+
x5

5!
+ · · · =

∞∑
n=0

(−1)
n x2n+1

(2n+ 1)!
(7.2)

The program sine-10deg.py listed below calculates �ve terms to get the value

from numpy import sin

x = 10 * pi/180 # one degree in radians

sinx = 0

for n in range(3):

term = (-1)**(n) * (x**(2*n+1)) / math.factorial(2*n+1)

sinx = sinx + term

err = sin(x) - sinx

print (sinx,err)

The results are shown below. The di�erence with the built-in sine function at each step is printed.
It can be seen that the error reduces with the number of terms. Modify the program to calculate
for higher angles to observe the e�ect of accuracy. Also increase the number of terms to see the
e�ect of it on accuracy.

0.17453292519943295 -0.0008847475325026166
0.17364682904373166 1.3486231986714614e-06
0.1736481786453548 -9.784244803245912e-10

7.2 Polynomial Interpolation

For any single valued and continuous function y = f(x), we can calculate the value of y for any
value of x in an interval a < x < b , where it is de�ned. Now, consider the problem that is just
opposite of it.

We have a set of tabular values (x0, y0) (x1, y1) ... (xi, yi) satisfying a function y = f(x) but
we do not know what the function is. We construct a function φ(x) that satis�es all the given data
points, obtained φ(x) may be only an approximation of y = f(x). When a set of polynomials are
used for constructing such a function like

yn(x) = a0 + a1(x− x0) + · · ·+ an(x− x0)(x− x1) · · · (x− xn−1) (7.3)

is called polynomial interpolation. We can construct a polynomial of degree n from n+1 distinct
data points. The coe�cients ai can be evaluated in the following manner. Since the polynomial
passes through all the data points, when x = x0, all the terms in 7.3 except a0 should vanish due
to the presence of (x− x0).

a0 = yo

Similarly for x = x1, only the �rst two terms will be non-zero.

y1 = a0 + a1(x1 − x0)

CHAPTER 7. NUMERICAL METHODS 99

a1 =
(y1 − y0)

(x1 − x0)

and for x = x2,

y2 = a0 + a1(x2 − x0) + a2(x2 − x0)a1(x2 − x1)

a2 =

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
This procedure can be continued to evaluate all the coe�cients. Before proceeding with the

general case, �rst let us consider a special case where the data points (xi, yi) are equally spaced.
It is possible to construct di�erence tables and use them for interpolation.

7.2.1 Di�erence Table

For a set of given values (x0, y0) (x1, y1) ... (xi, yi) , the di�erences are
∆y0 = y1 − y0
∆y1 = y2 − y1
∆y2 = y3 − y2 etc.
And
∆2y0 = ∆y1 −∆y0 = (y2 − y1)− (y1 − y0)
Similarly
∆3y0 = ∆2y1 −∆2y0
They can be expressed in the tabular form as shown below, to make manual computation easier.

For numerical computation, we will use the data sets [0, 2, 4, 6] and [0, 8, 64, 216] , that are derived
from the equation y = x3. This will help veri�cation of the interpolated results by comparing with
the analytic value.

x y ∆ ∆2 ∆3

0 0
8

2 8 48
56 48

4 64 96
152

6 216

The Di�erences are available from the table. We can use Newton's formula for interpolation to
calculate the value of y for an unknown value of x .

7.2.2 Newton's forward di�erence formula

On the equation

yn(x) = a0 + a1(x− x0) + · · ·+ an(x− x0)(x− x1) · · · (x− xn−1) (7.4)

applying the condition of equal spacing x1 = x0 + h , x2 = x0 + 2h etc. results in

yn(x) = y0 + p∆y0 +
p(p− 1)

2!
∆2y0 +

p(p− 1)(p− 2)

3!
∆3y0 + · · · (7.5)

CHAPTER 7. NUMERICAL METHODS 100

where p = x−x0

h and h = x1 − x0. This is Newton's forward di�erence interpolation formula.
Using it, let us calculate y(x) for x = 2.5
h = 2− 0 = 2

p = (2.5−0)
2 = 1.25

y(2.5) = 0 + 1.25× 8 +
1.25(1.25− 1)48

2
+

1.25(1.25− 1)(1.25− 2)48

6
= 15.625

The calculations could be done manually and the result agrees with the analytical result 2.53 =
15.625. It is left as an exercise to the reader to use the function y = x4 and repeat the exercise.
The result would not agree, add one more point to observe the di�erence.

Next step is to write a Python program to do the same. The code should work for any number
of input points. We need to create two lists to store the x and y values. The the table we
can see that the di�erences require arrays of di�erent sizes and the number of di�erence arrays
depends on the number of data points. A better approach is to make a single di�erence array.
After each iteration, we store the �rst element calculated in that iteration to a list, to be used in
the interpolation formula. The program forward-di�-table.py listed below prints the forward
di�erence table.

from copy import copy #to make a deep copy of a list

x = [0,2,4,6]

y = [0,8,64,216]

n = len(x)

for a in x: print('%10.0f'%a, end = �)

print()

for a in y: print('%10.0f'%a, end = �)

print()

deltas = [] # list to store the required Delta values

diff = copy(y)

for k in range(0, n-1):

tmp = copy(diff)

print((k+1)*5*' ', end = �) # adjust spacing

for i in range(k,n-1):

tmp[i+1] = (diff[i+1] - diff[i])

print('%10.0f'%tmp[i+1], end = �)

print()

deltas.append(tmp[k+1]) # store delta

diff = copy(tmp)

print ('Delta values ', deltas)

The algorithm works in the following manner. y is the starting value of di�erence array. Inside the
loop the di�erence array is copied into a temporary array. Inside the inner loop, the next set of
di�erences are calculated. The element required for future use is appended to a list. The output
of the program is given below.

0 2 4 6

0 8 64 216

8 56 152

48 96

48

Delta values [0 8 48 48]

CHAPTER 7. NUMERICAL METHODS 101

The code shown below uses the Delta to calculate the value of y for x=2.5.

nx = 2.5

h = x[1] - x[0]

p = (nx-x[0])/h

print('p = ', p)

ny = y[0] + p*deltas[0] + p*(p-1)*deltas[1]/2 + p*(p-1)*(p-2)*deltas[2]/6

print (ny)

Look for similarities between Taylor's series discussed in section 7.1 that and polynomial interpo-
lation process. The derivative of a function represents an in�nitesimal change in the function with
respect to one of its variables. The �nite di�erence is the discrete analog of the derivative. Using
the divided di�erence method, we are in fact calculating the derivatives in the discrete form.

7.2.3 Newton's backward di�erence formula

By taking the �nal point as reference, the polynomial can be expressed as

yn(x) = a0 + a1(x− xn) + · · ·+ an(x− xn)(x− xn−1) · · · (x− x1) (7.6)

Applying similar conditions on this equation, we arrive at the Backward Di�erence Interpolation
Formula.

yn(x) = yn + p∇yn +
p(p+ 1)

2!
∇2yn + · · ·+ p(p+ 1) . . . (p+ n− 1)

n!
∇nyn (7.7)

In this method also, the table is prepared in the same manner but it uses values from the end
of the table. The program backward-di�-table.py, listed below, is identical to the previous
program, except for statement deltas.append(tmp[-1]) that stores the last element from the kth

di�erence array.

from copy import copy

x = [0,2,4,6]

y = [0,8,64,216]

n = len(x)

for a in x: print('%10.0f'%a, end = �)

print()

for a in y: print('%10.0f'%a, end = �)

print()

deltas = [] # list to store the required Delta values

diff = copy(y)

for k in range(0, n-1):

tmp = copy(diff)

print((k+1)*5*' ', end = �) # adjust spacing

for i in range(k,n-1):

tmp[i+1] = (diff[i+1] - diff[i])

print('%10.0f'%tmp[i+1], end = �)

print()

deltas.append(tmp[-1]) # store delta

diff = copy(tmp)

print ('Delta values ',Delta)

CHAPTER 7. NUMERICAL METHODS 102

The code given below can be used to verify the table.

nx = 2.5

h = x[1] - x[0]

p = (nx-x[-1])/h

print('p = ', p)

ny = y[-1] + p*deltas[0] + p*(p+1)*deltas[1]/2 + p*(p+1)*(p+2)*deltas[2]/6

print (ny, nx**3)

The program di�-table-test.py listed below plots the results from both the interpolations and
the input data points along with y = x3.

import numpy as np

import matplotlib.pyplot as plt

x = [0,2,4,6]

y = [0,8,64,216]

n = len(x)

nx = np.linspace(0,6,11) # 11 values of x from 0 to 3

h = x[1] - x[0]

p = (nx-x[0])/h

deltas = [8, 48, 48] #from difference table, forward

ny = y[0] + p*deltas[0] + p*(p-1)*deltas[1]/2 +

p*(p-1)*(p-2)*deltas[2]/6

plt.plot(nx,ny, 'x', label='Forward') # interpolated by FD method

p = (nx-x[-1])/h

deltas = [152, 96, 48] #from difference table, backward

ny = y[-1] + p*deltas[0] + p*(p+1)*deltas[1]/2 + p*(p+1)*(p+2)*deltas[2]/6

plt.plot(nx,ny, '+', label='Backward') # interpolated by BD method

plt.plot(x,y, 'o', label='Data points') # given data points

plt.plot(nx, nx**3, label = '$y=x^3$') # analytical value

plt.legend(framealpha=0.5)

plt.show()

The output of the program is given in �gure 7.1

7.2.4 Lagrange's Interpolation formula

This method can be used for interpolating non-uniformly spaced data points. A set of tabular
values (x0, y0) (x1, y1) ... (xi, yi) can be represented as

Ln(x) =

n∑
i=0

li(x)yi

where li(x) are polynomials in x of degree n.

li(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(x− x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)

program lagrange-poly.py uses a non-uniformly spaced data set. We have generated this
from equation y = x3 to cross check the results of interpolation. The evaluation of the coe�cients
is simple, the ithdata point is excluded while calculating the ith term.

CHAPTER 7. NUMERICAL METHODS 103

Figure 7.1: Newton's forward and backward interpolation results.

xa = [0, .5, 1.5, 3]

ya = [0, .125, 3.375, 27]

N = len(xa)

def lagra(x):

res = 0.0

for i in range(N):

term = 1

for k in range(N):

if i != k:

#print (x, xa[k], xa[i], xa[k])

term = term * (x - xa[k]) / (xa[i]-xa[k])

#print (term)

res += term * ya[i]

return res

print (lagra(2.5), 2.5**3)

The output is 15.625 15.625. The result tallies with the analytical value. Remove the comment to
print each term.

7.2.5 Newton's General Interpolation Formula

Suppose the the given set is (xi, yi), i = 0, 1 . . . n− 1 and the polynomial is

yn(x) = a0 + a1(x− x0) + · · ·+ an(x− x0)(x− x1) · · · (x− xn−1) (7.8)

We have already seen that the coe�cients can be calculated from equations;

CHAPTER 7. NUMERICAL METHODS 104

a0 = yo

a1 =
(y1 − y0)

(x1 − x0)

a2 =

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
They can be expressed better using the divided di�erence notation as shown below.

[y0] = y0

[y0, y1] =
(y1 − y0)

(x1 − x0)

[y0, y1, y3] =

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
=

[y1, y2]− [y0, y1]

(x2 − x0)

Using these notation, the polynomial can be re-written as;

y(x) = [y0] + [y0, y1] (x− x0) + [y0, y1, y2] (x− x0)(x− x1) +

· · ·+ [y0, . . . , yn] (x− x0) . . . (x− xn−1) (7.9)

The preparation of the forward di�erence table or equation 7.9 does not assume uniformly
spaced data points. We will demonstrate it using a non-uniformly spaced data set, using the
program newton-general.py listed below. Note the term x(i − k) in the denominator, that
decides the x interval. We have generated the input data using the equation y = x3.

from copy import copy

x = [0, .5, 1.5, 3]

y = [0, .125, 3.375, 27]

n = len(x)

for a in x: print('%10.2f'%a, end= �)

print()

for a in y: print('%10.2f'%a, end = �)

print()

for k in range(0,n-1):

tmp = copy(y)

for i in range(k,n-1):

tmp[i+1] = (y[i+1] - y[i]) / (x[i+1]-x[i-k])

print('%10.2f'%tmp[i+1], end = �)

print()

y = copy(tmp)

print ('coefficients ',y)

#Verification

a = y

nx = 2.5

CHAPTER 7. NUMERICAL METHODS 105

ny = a[0] + (nx - x[0])*a[1] + (nx - x[0])*(nx - x[1])*a[2] +

(nx - x[0])*(nx - x[1])*(nx - x[2])*a[3]

print(ny, nx**3)

The program prints the di�erence table and the coe�cients. We verify the validity of all these
equations by calculating the value of y for any arbitrary value of x using equation 7.9and comparing
it with x3. Let us take x = 2.5 as an example.

y(2.5) = 0 + 1(2.5− 0) + 3(2.5− 0)(2.5− 1) + 1(2.5− 0)(2.5− 1)(2.5− 2) = 15.625

The result tallies with the exact value of 2.53 = 15.625.

7.3 Numerical Integration

The general problem of numerical integration is to compute

I =

∫ b

a

f(x) dx (7.10)

where a set of tabular values (x0, y0) (x1, y1) ... (xi, yi) satisfying a function y = f(x) are given.
To evaluate the integral 7.10, we divide it in to n equal intervals each having a width h. Then

xn = x0 + nh and I =
∫ x0+nh

x0
f(x) dx

According to Newton's forward di�erence formula,

f(x) = y0 + p∆y0 +
p(p− 1)

2!
∆2y0 +

p(p− 1)(p− 2)

3!
∆3y0 + · · ·

will lead to the Newton Cote's Quadrature formula2,

I = nh

[
y0 +

n

2
∆y0 +

n(2n− 3)

3!
∆2y0 +

n(n− 1)2

4!
∆3y0 + . . .

]
(7.11)

For di�erent values of n this will result in di�erent quadrature formulae.

7.3.1 Trapezoidal Rule

Truncating equation 7.11 at n = 1 results in Trapezoidal rule. The sum of the areas .∫ x0+h

x0

f(x)dx = h(y0 +
∆y0

2
) = h

[
y0 +

1

2
(y1 − y0)

]
=
h

2
(y0 + y1)

Similarly ∫ x0+2h

x0+h

ydx =
h

2
(y1 + y2)

Adding all the areas give∫ x0+nh

x0

f(x)dx =
h

2
[y0 + 2(y1 + y2 + . . .+ yn−1) + yn] (7.12)

2https://theengineeringmaths.com/wp-content/uploads/2017/11/num-di�-integ-web.pdf

CHAPTER 7. NUMERICAL METHODS 106

Figure 7.2: Area under the curve is divided it in to a large number of intervals. Area of each of
them is calculated by assuming them to be trapezoids.

This is known as trapezoidal formula. The area under the curve, as shown in �gure 7.2, is calculated
by dividing it in to n section. Each section is a trapezoid in this case. The program trapez.py does
integration of a given function using equation 7.12. We will choose an example where the results
can be cross checked easily, the value of π is calculated by evaluating the area of a unit circle by
integrating the equation of a circle.

Example trapez.py

from math import *

def y(x): # equation of a circle

return sqrt(1.0 - x**2)

def trapez(f, a, b, n):

h = (b-a) / n

sum = 0

x = 0.5 * h # f(x) at middle of the slice

for i in range (1,n):

sum = sum + h * f(x)

x = x + h

return sum

print 4 * trapez(y, 0.0, 1.0,1000)

print 4 * trapez(y, 0.0, 1.0,10000)

The output is shown below. The result gets better by increasing n thus resulting in smaller h. .
3.140417031779045
3.141555466911023

7.3.2 Simpson's 1/3-Rule

Truncating equation 7.11 at n = 2 results in a second degree polynomial. The total curve will
divided in to n

2 arcs , that also implies that n must be an even number. Area of sections will be
given by, ∫ x2

x0

ydx = 2h(y0 + ∆y0+
1

6
∆2y0) =

h

3
(y0 + 4y1 + y2)

similarly

CHAPTER 7. NUMERICAL METHODS 107

∫ x4

x2

ydx =
h

3
(y2 + 4y3 + y4)

etc. Summing all terms will give.∫ xn

x0

ydx =
h

3
[y + 4(y1 + y3 + · · ·+ yn−1) + 2(y2 + y4 + · · ·+ yn−2) + yn] (7.13)

This is known as Simpson's 1/3 rule. The program simpson-1by3.py calculates the area
under an arc, one fourth of a circle, having unit radius. The equation of the circle y =

√
r2 − x2

is integrated from 0 to 1. The result can be easily cross checked with the expected value of π4 .

from math import *

def sqr(a):

return sqrt(1.0 - a**2)

def simp13(f, a, b, n):

h = (b-a) / n

result = f(a) # first point

for i in range (1,n,2):

result = result + 4 * f(a + h * i)

for i in range (2,n-1,2):

result = result + 2 * f(a + h * i)

result = result + f(b) # last point

return h/3 * result

print(4*simp13(sqr,0.,1.,100))

print(4*simp13(sqr,0.,1.,1000))

The program prints

3.1411332053392274

3.1415781302139867

7.4 Derivatives from the Interpolation Formula

The Forward Di�erence Interpolation formula is expressed as

yn(x) = a0 + p∆y0 +
p(p− 1)

2!
∆2y0 +

p(p− 1)(p− 2)

3!
∆3y0 + · · · (7.14)

where p = x−x0

h giving dp
dx = 1

h

dy

dp
= ∆y0 +

(2p− 1)

2!
∆2y0 +

(3p2 − 6p+ 2)

3!
∆3y0 + · · · (7.15)

dy

dx
=
dy

dp
× dp

dx

dy

dx
=

1

h

[
∆y0 +

2p− 1

2!
∆2y0 +

(3p2 − 6p+ 2)

3!
∆2y0 + . . .

]
(7.16)

CHAPTER 7. NUMERICAL METHODS 108

At x = 0, p = 0

dy

dx
=

1

h

[
∆y0 +

∆2y0
2!

+
∆3y0

3!
+ . . .

]
(7.17)

To verify these equations again we use data generated from y = x3. The program fd-derivative-
test.py uses the results from the forward di�erence table and calculates the value of the derivative
at x = 1.5 by using equation 7.16. The result is cross checked against 3x2 , the derivative of x3.

x = [0,1,2,3]

y = [0,1,8,27]

a = [0,1,3,1] #coefficients from FD table

h = x[1] - x[0]

nx = 1.5 # new point

p = (nx-x[0])/h

dny = a[1] + (2*p-1)*a[2] + (3*p**2-6*p+2)*a[3]

print (dny, 3*nx**2)

7.4.1 Numpy gradient function

The numpy module provides functions to di�erentiate data sets available in numerical form. Pro-
gram di�-data.py loads two columns of data, x and y, from a �le, calculates the �rst and second
derivatives and plots them. The program is shown below.

import numpy as np

import matplotlib.pyplot as plt

x,y = loadtxt("diff-data.txt", delimiter=' ') # read 2 column data

dx = x[1] - x[0]

dy = np.diff(y)/dx

d2y = np.diff(dy)/dx

plt.subplot(1,3,1)

plt.plot(x,y)

plt.subplot(1,3,2)

plt.plot(x[:-1],dy)

plt.subplot(1,3,3)

plt.axis([0,10,0,20])

plt.plot(x[:-2],d2y)

plt.show()

Output of the program in shown in �gure7.3.The input data looks like a parabola, �rst derivative
has constant slope and the second derivative is a constant. The data is generated by the following
lines of code.

t = linspace(0,10,11)

s = 5 * t**2 #S = ut+ 1
2at

2

savetxt('diff-data.txt', array([t,s]), delimiter = ' ')

7.5 First Order Ordinary Di�erential Equations

Di�erential equations are one of the most important mathematical tools used in producing mod-
els for physical and biological processes. In this section, we will discuss the numerical methods

CHAPTER 7. NUMERICAL METHODS 109

Figure 7.3: Numpy gradient function demonstration

for solving the initial value problem for �rst-order ordinary di�erential equations. Consider the
equation,

dy

dx
= f(x, y); y(x0) = y0 (7.18)

where the derivative of the function f(x, y) is known everywhere, and the value of the function
at some value of x = x0 also is known. The objective is to �nd out the value of the function for
other values of x. The underlying idea of any routine for solving the initial value problem is to
rewrite the dy and dx as �nite steps 4y and 4x, and multiply the equations by 4x, and use the
Taylor series as explained in the previous section.

Implementation of this procedure as such results in the Euler's method. Euler method is very
simple and demonstrates the concept of using Taylor series. The method is not accurate due to the
following reasons. The derivative at the starting point is used for computing the function during
the interval ∆x, that may not be true. The higher order derivatives are ignored. Later we will
explore some methods that remedy this drawbacks.

7.5.1 Euler method

The equations of Euler's method can be obtained as follows. By the de�nition of derivative,

y
′
(xn, yn) =

lim

h→ 0

y(xn + h)− y(xn)

h
(7.19)

For su�ciently small values of h , we can write,

y(xn + h) = y(xn, yn) + hy
′
(xn) (7.20)

The above equations implies that, if the value of the function y(x) is known to be yn at the
point xn, its value at a nearby point xn+1 is given by yn +h× y′

. The program euler.py calculates
the value of sine function using its derivative, ie. the cosine function. We start from x = 0 , where
sin(x) = 0 and compute the subsequent values using the derivative, cos(x), and compare the result
with the actual sine function. The requirement is to calculate the value of a function during a
given interval. The values of the function and it's derivative is given at the starting point. We
will de�ne a numpy array of the values of the independent variable x during the interval with a
spacing of ∆x between two adjacent points. An empty array of the same size is created to �ll in
the computed values of the function.

CHAPTER 7. NUMERICAL METHODS 110

Figure 7.4: Outputs of (a)euler-sine.py.(b)modi�ed for line

Example euler-sine.py

import numpy as np

import matplotlib.pyplot as plt

def f1(x,y):

return np.cos(x)

def euler(x, y, fxy, h):

return y + h * fxy(x,y) # Euler method

dx = .5 # step size

xmin = 0 # initial value

xmax = np.pi # calculate up to this only

xa = np.arange(xmin, xmax, dx)

N =len(xa)

ya = np.empty(N) # numpy array to store results

ya[0] = 0.0 # given initial value

for i in range(N-1):

ya[i+1] = euler(xa[i], ya[i], f1, dx)

plt.plot(xa, ya, 'x-')

plt.plot(xa, np.sin(xa), 'o-')

plt.show()

The output of euler-sine.py is shown in �gure 7.4. A large step size is chosen to highlight the
error. Modify the code to reduce dx to see the result. To understand the source of error, modify
the function f1 to return a number, like return 4. This represents a straight line with a slope of
4. The results are shown in �gure .

7.5.2 Second order Runge-Kutta method

The formula 7.19 used by Euler method which advances a solution from xn to xn+1 is not symmet-
ric, it advances the solution through an interval h, but uses derivative information at the beginning
of that interval. Better results are obtained if we take trial step to the midpoint of the interval and
use the value of both x and y at that midpoint to compute the real step across the whole interval.
This is called the second-order Runge-Kutta method or the midpoint method. The only changes
required in the code are replacing the function 'euler' by 'rk2' as shown below.

CHAPTER 7. NUMERICAL METHODS 111

Figure 7.5: Outputs of (a) rk2.py (b)rk4.py

def rk2(x, y, fxy, h):

k1 = fxy(x, y)

k2 = fxy(x + h, h*k1)

return y + h * (k1/2 + k2/2)

The result is shown in �gure 7.5(a).

7.5.3 Fourth order Runge-Kutta method

The fourth order Runge-Kutta method is the most popular one and is commonly referred as the
Runge-Kutta method. In each step the derivative is evaluated four times, once at the initial point,
twice at trial midpoints, and once at a trial endpoint, as shown below.

Every trial evaluation uses the value of the function from the previous trial point, ie. k2 is
evaluated using k1 and not using yn. From these derivatives the �nal function value is calculated,
The calculation is done using the equations,

k1 = hf(xn, yn)

k2 = hf(xn + h
2 , yn + k1

2)

k3 = hf(xn + h
2 , yn + k2

2)
k4 = hf(xn + h, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (7.21)

The program rk4-sine.py is obtained by repacing function rk2 by rk4, as listed below.

CHAPTER 7. NUMERICAL METHODS 112

def rk4(x, y, fxy, h): # x, y , f(x,y)

k1 = h * fxy(x, y)

k2 = h * fxy(x + h/2.0, y+k1/2)

k3 = h * fxy(x + h/2.0, y+k2/2)

k4 = h * fxy(x + h, y+k3)

return y + (k1/6 + k2/3 + k3/3 + k4/6)

From the results 7.4(a) ,7.5(a) and 7.5(b) one can see the superiority of fourth order Runge-Kutta
method. The program compare-euler-RK4.py evaluates sine function using both Euler and RK4
methods. The error is compared by plotting the di�erences with sin() function. It can be seen
that the error is much less in the case of RK4

Example compare-euler-RK4.py

import numpy as np import matplotlib.pyplot as plt

def f1(x,y):

return np.cos(x)

def euler(x, y, fxy, h):

return y + h * fxy(x,y) # Euler method

def rk4(x, y, fxy, h): # x, y , f(x,y)

k1 = h * fxy(x, y)

k2 = h * fxy(x + h/2.0, y+k1/2)

k3 = h * fxy(x + h/2.0, y+k2/2)

k4 = h * fxy(x + h, y+k3)

return y + (k1/6 + k2/3 + k3/3 + k4/6)

dx = .1 # step size

xmin = 0 # initial value

xmax = np.pi # calculate up to this only

xa = np.arange(xmin, xmax, dx)

array of the independent variable N =len(xa)

ya = np.empty(N) # numpy array to store results

sf = np.sin(xa) # sine function

ya[0] = 0.0 # given initial value

for i in range(N-1):

ya[i+1] = euler(xa[i], ya[i], f1, dx)

plt.plot(xa, ya-sf, 'x')

for i in range(N-1):

ya[i+1] = rk4(xa[i], ya[i], f1, dx)

plt.plot(xa, ya-sf, 'o')

plt.show()

7.5.4 Function depending on the integral

In the previous examples, the function depends on the independent variable only. Let us consider
an example where it depends on y also. The program rk4-xy.py listed below evaluates the function

CHAPTER 7. NUMERICAL METHODS 113

f(x, y) = 2(y − x2) + 1. Readers may verify the results by manual computing.

Example rk4-xy.py

import numpy as np

def f1(x,y):

return 2*(y-x**2) + 1 # derivative

def rk4(x, y, fxy, h): # x, y , f(x,y)

k1 = h * fxy(x, y)

k2 = h * fxy(x + h/2.0, y+k1/2)

k3 = h * fxy(x + h/2.0, y+k2/2)

k4 = h * fxy(x + h, y+k3)

ny = y + (k1/6 + k2/3 + k3/3 + k4/6)

return ny

dx = 0.1 # stepsize

xa = np.arange(0,1,dx)

N = len(xa)

ya = np.empty(N) # to store y values

ya[0] = 0.0 # initial value

for k in range(N-1):

ya[k+1] = rk4(xa[k], ya[k], f1, dx)

for k in range(N):

print (xa[k], ya[k], xa[k]**2 + xa[k])

The results are shown below. The last column is the exact value, from y = x2 + x . The program
uses the derivative of this equation dy

dx = 2x + 1 , where x is substituted with (y − x2) to get
2(y − x2) + 1.

0.0 0.0 0.0
0.1 0.109998333333 0.11
0.2 0.239996297667 0.24
0.3 0.389993811303 0.39
0.4 0.559990774459 0.56
0.5 0.749987065258 0.75
0.6 0.959982534839 0.96
0.7 1.18997700139 1.19
0.8 1.43997024283 1.44
0.9 1.70996198792 1.71

7.6 Second Order Ordinary Di�erential Equations

In order to solve a second order di�erential equation using numerical methods, we need to convert
it in to two coupled �rst order equations, as shown below. The equation

d2y
dx2 = d

dx

(
dy
dx

)
= f(x, y)

CHAPTER 7. NUMERICAL METHODS 114

can be converted in to two coupled equations
dy1
dx = f1(y1, y2, x) = y2 and dy2

dx = f2(y1, y2, x)

The program second-ode-rk4.py listed below integrates the equation d2y
dx2 = −y ,with the initial

conditions y = 0 and dy
dx = 2 at x = 0. The variable x is passed on to the functions f1 and f2.

even though they don't use it in this example. The result plotted shows that the solution is sine
function, where the initial value of dydx decides the amplitude.

import numpy as np

import matplotlib.pyplot as plt

dx = 0.1

xa = np.arange(0, 10, dx) # array of x

N =len(xa)

def f1(y1,y2,x):

return y2 # derivative of y1 is y2

def f2(y1,y2,x):

return -y1 # as per the equation

def rk4(y1,y2, f1, f2, x, h):

k11 = h*f1(y1,y2,x);

k21 = h*f2(y1,y2,x);

k12 = h*f1(y1+0.5*k11,y2+0.5*k21,x+0.5*h);

k22 = h*f2(y1+0.5*k11,y2+0.5*k21,x+0.5*h);

k13 = h*f1(y1+0.5*k12,y2+0.5*k22,x+0.5*h);

k23 = h*f2(y1+0.5*k12,y2+0.5*k22,x+0.5*h);

k14 = h*f1(y1+k13,y2+k23,x+h);

k24 = h*f2(y1+k13,y2+k23,x+h);

y1 += (k11+2*k12+2*k13+k14)/6;

y2 += (k21+2*k22+2*k23+k24)/6;

return y1,y2

y1a = np.zeros(N) # array to store the computed y1

y2a = np.zeros(N) # and y2

y1a[0] = 0 # initial values

y2a[0] = 2 # of y1 and y2

for i in range(N-1):

y1a[i+1], y2a[i+1] = rk4(y1a[i], y2a[i], f1, f2, xa[i], dx)

plt.plot(xa, y1a) plot(xa, y2a)

plt.show()

CHAPTER 7. NUMERICAL METHODS 115

7.7 Solution of Algebraic Equations

In general, an equation may have any number of roots, or no roots at all. For example f(x) = x2

has a single root whereas f(x) = sin(x) has an in�nite number of roots. The roots can be located
visually, by looking at the intersections with the x-axis. Another useful tool for detecting and
bracketing roots is the incremental search method. The basic idea behind the incremental search
method is simple: if f(x1) and f(x2) have opposite signs, then there is at least one root in the
interval (x1, x2). If the interval is small enough, it is likely to contain a single root. Thus the
zeroes of f(x) can be detected by evaluating the function at intervals of ∆x and looking for change
in sign.

There are several potential problems with the incremental search method: It is possible to miss
two closely spaced roots if the search increment ∆x is larger than the spacing of the roots. Certain
singularities of f(x) can be mistaken for roots. For example, f(x) = tan(x) changes sign at odd
multiples of π/2, but these locations are not true zeroes as shown in �gure 7.6 (b).

Program rootsearch.py listed below implements the function root() that searches the roots
of a function f(x) from x = a to x = b, increasing it by dx.

def func(x):

return x**3-10.0*x*x + 5

def root(f,a,b,dx):

x = a

while True:

f1 = f(x)

f2 = f(x+dx)

if f1*f2 < 0:

return x, x + dx

x = x + dx

if x >= b:

return (None,None)

x,y = root(func, 0.0, 1.0,.1)

print x,y

The program �nds that the root is between .7 and .8. Let us explore other methods like Bisection
method, Newton-Raphson method etc., to �nd the root with a speci�ed accuracy.

CHAPTER 7. NUMERICAL METHODS 116

Figure 7.6: (a)Function 2x2 − 3x− 5 and its tangents at x = 4 and x = 3 (b) tan(x).

7.7.1 The Bisection method

The method of bisection �nds the root by successively halving the interval until it becomes su�-
ciently small. Bisection is not the fastest method available for computing roots, but it is the most
reliable. Once a root has been bracketed, bisection will always �nd it. The method of bisection
works in the following manner. If there is a root between x1 and x2, then f(x1) × f(x2) < 0.
Next, we compute f(x3), where x3 = (x1 + x2)/2. If f(x2)× f(x3) < 0, then the root must be in
(x2, x3) and we replace the original bound x1 by x3 . Otherwise, the root lies between x1 and x3,
in that case x2 is replaced by x3. This process is repeated until the interval has been reduced to
the speci�ed value, say ε.

The number of bisections required to reach a prescribed limit, ε, is given by equation 7.22.

n =
ln(|4x|)/ε

ln 2
(7.22)

The program bisection.py �nds the root of the equation x3 − 10x2 + 5. The starting values are
found using the program rootsearch.py. The results are printed for two di�erent values of accuracy.

Example bisection.py

import math def func(x):

return x**3 - 10.0* x*x + 5

def bisect(f, x1, x2, epsilon=1.0e-9):

f1 = f(x1)

f2 = f(x2)

if f1*f2 > 0.0:

print 'x1 and x2 are on the same side of x-axis'

return

n = math.ceil(math.log(abs(x2 - x1)/epsilon)/math.log(2.0))

n = int(n)

for i in range(n):

x3 = (x1 + x2) / 2.0 # take the midpoint

f3 = f(x3)

if f3 == 0.0: # found the root

return x3

if f2*f3 < 0.0: # root is in second half

CHAPTER 7. NUMERICAL METHODS 117

x1 = x3 # change start to midpoint

f1 = f3

else:

x2 = x3 # root is in first half

f2 = f3 # change end to midpoint

return x3

x = bisect(func, 0., 1., 1.0e-4)

print (x, func(x))

x = bisect(func, .7, .8, 1.0e-4)

print (x, func(x))

x = bisect(func, .7, .8, 1.0e-6)

print (x, func(x))

The output is shown below. Second column indicates amount of the error.

0.73455810546875 0.0005935349679475621

0.73466796875 -0.0008427397655319524

0.7346031188964843 5.08405033805559e-06

7.7.2 Regula Falsi (method of Chords)

In the bisection method the new interval depends only on the choice of end points, the function
f(x) is not used for �nding the next interval. A better approximation would be obtained by taking
the straight line joining the points (a,f(a)) and (b,f(b)) intersecting the x-axis. This is given by

x =
af(b)− bf(a)

f(b)− f(a)

The program regula-falsi.py implements this. Only one line of code is di�erent from the code
for bisection method. The line

x3 = (x1*f2 - x2*f1)/(f2-f1)

replaces

x3 = 0.5 * (x1 + x2)

The results after this change are

0.7346035077884963 1.0549783269198088e-11

0.7346035077893032 8.881784197001252e-16

0.7346035077893032 8.881784197001252e-16

It can be seen that the Regula Falsi is giving better results.

7.7.3 Newton-Raphson Method

The Newton�Raphson algorithm requires the derivative of the function also to evaluate the roots.
Therefore, it is usable only in problems where f ′(x) can be readily computed. It does not require
the value at two points to start with. We start with an initial guess which is reasonably close to
the true root. Then the function is approximated by its tangent line and the x-intercept of the

CHAPTER 7. NUMERICAL METHODS 118

tangent line is calculated. This value is taken as the next guess and the process is repeated. The
Newton-Raphson formula is shown below.

xi+1 = xi −
f(xi)

f ′(xi)
(7.23)

Figure 7.6(a) shows the graph of the quadratic equation 2x2− 3x− 5 = 0 and its two tangents.
It can be seen that the zeros are at x = -1 and x = 2.5, and we use the program newraph.py
shown below to �nd the roots. The function nr() is called twice, and we get the roots nearer to
the corresponding starting values.

Example newraph.py

def f(x):

return 2.0 * x**2 - 3*x - 5

def df(x):

return 4.0 * x - 3

def nr(x, tol = 1.0e-9):

for i in range(30):

dx = -f(x)/df(x)

#print x

x = x + dx

if abs(dx) < tol:

return x

print nr(4)

print nr(0)

The output is shown below.
2.5
-1.0
Uncomment the print statement inside nr() to view how fast this method converges, compared

to the bisection method. The program newraph_plot.py, listed below is used for generating the
�gure 7.6.

Example newraph_plot.py

import numpy as np

import matplotlib.pyplot as plt

def f(x):

return 2.0 * x**2 - 3*x - 5

def df(x):

return 4.0 * x - 3

vf = np.vectorize(f)

x = np.linspace(-2, 5, 100)

y = vf(x)

Tangents at x=3 and 4, using one point slope formula

x1 = 4

CHAPTER 7. NUMERICAL METHODS 119

tg1 = df(x1)*(x-x1) + f(x1)

x1 = 3

tg2 = df(x1)*(x-x1) + f(x1)

plt.grid(True)

plt.plot(x,y)

plt.plot(x,tg1)

plt.plot(x,tg2)

plt.ylim([-20,40])

plt.show()

We have de�ned the function f(x) = 2x2 − 3x− 5 and vectorized it. The derivative 4x2 − 3 also
is de�ned by df(x), which is the slope of f(x). The tangents are drawn at x = 4 and x = 3, using
the point slope formula for a line y = m(x− x1) + y1.

7.8 System of Linear Equations

How to solve a system of linear equations. Let us start with a simple example.

3y + 2x = 7

5y + 2x = 9

Elimination and substitution are the two methods generally used. We can eliminate x from the
second by subtracting the �rst from it, like.

3y + 2x = 7

2y − 0 = 2

Now multiply second by 3/2 and subtract it from �rst gives

0 + 2x = 4

2y − 0 = 2

Dividing both equations by 2, we get the solutions x = 2 and y = 1. For large systems it is
much easier to formulate the problem using matrices and solve by standard methods.

7.8.1 Gauss-Jordan Elimination method

The system of equations

2x +y −z = 9
−3x −y +2z = −11
−2x +y +2z = −3

CHAPTER 7. NUMERICAL METHODS 120

can be represented by an augmented matrix as shown below.

A =

 2 1 −1 8
−3 −1 2 −11
−2 1 2 −3

Our objective is to reduce the 3x3 matrix on the left side to an identity matrix. Then the right

most column will contain the solutions. The permitted row operations are

1. Swap the positions of two rows.

2. Multiply a row by a non-zero scalar.

3. Add to one row a scalar multiple of another.

The �rst step is to convert the matrix in to an upper triangular form by performing the following
operations.

� Find the ratio r21 = A21

A11
. If A11 is zero we will swap two rows.

� Perform Row2− > Row2− r21 ×Row1 . This will make a21 zero.

� Similarly �nd r31 = A31

A11
and make a31zero.

� Repeat the same for all remaining rows.

� Move one step along the diagonal.

� Find the ratio r
23=

A32
A22

� Perform Row3− > Row3− r21 ×Row2 . This will make a32 zero.

The result will look like

A =

 2 1 −1 8
0 .5 .5 1
0 0 −1 1

Next step is to repeat the same procedure, starting from A33 and eliminate the upper half of

the matrix. After that each row will be divided by the value of the diagonal element in that row
so that we get an identity matrix in the left part of the augmented matrix. The Python code
gauss-jordan.py (contains comments) listed below implements the algorithm explained.

import numpy as np

a = np.array([[2,1,-1,8], [-3,-1,2,-11], [-2,1,2,-3]],dtype='float')

NR = len(a)

NC = NR + 1 # one more column, Augmented matrix

for anchor in range(NR-1):

for row in range(anchor, NR-1):

ratio = a[row+1,anchor]/a[anchor,anchor]

a[row+1] = np.subtract(a[row+1],a[anchor]*ratio)

print (a,'\n')

for anchor in range(NR-1, 0,-1): # looping for 2, 1,

for row in range(anchor):

ratio = a[row,anchor]/a[anchor,anchor]

a[row] = np.subtract(a[row],a[anchor]*ratio)

print (a,'\n')

CHAPTER 7. NUMERICAL METHODS 121

The �nal output is

[[1. 0. 0. 2.]

[0. 1. 0. 3.]

[-0. -0. 1. -1.]]

implies x = 2 , y = 3 and z = −1. In the code above, we have not considered the case of any
diagonal element being zero in the beginning. This will result in a division by zero error. One can
check for this and do a swapping of rows using

def swapRow(a, r1, r2): # swap rows r1 an r2 in a

tmp = copy(a[r2])

a[r2] = a[r1]

a[r1] = tmp

7.8.2 Matrix Inversion method

Non-homogeneous matrix equations of the form Ax = b can be solved by matrix inversion to obtain
x = A−1b . The system of equations

4x+ y − 2z = 0
2x− 3y + 3z = 9
−6x− 2y + z = 0

can be represented in the matrix form as

 4 1 −2
2 −3 3
−6 −2 1

 x
y
z

 =

 0
9
0

and can be solved by �nding the inverse of the coe�cient matrix. x

y
z

 =

 4 1 −2
2 −3 3
−6 −2 1

−1 0
9
0

If you want to practice your python skills try using the methods described earlier, as listed in

the program solve-eqn.py.

def invert(m):

m1, m2, m3 = m[0]

m4, m5, m6 = m[1]

m7, m8, m9 = m[2]

d = m1*(m5*m9-m6*m8) - m2*(m4*m9-m6*m7) + m3*(m4*m8-m5*m7)

return [[(m5*m9-m6*m8)/d, (m3*m8-m2*m9)/d, (m2*m6-m3*m5)/d],

[(m6*m7-m4*m9)/d, (m1*m9-m3*m7)/d, (m3*m4-m1*m6)/d],

[(m4*m8-m5*m7)/d, (m2*m7-m1*m8)/d, (m1*m5-m2*m4)/d]]

a = invert(a)

b = [[0], [9], [0]] # 3 x 1

c = [[0], [0], [0]] # 3 x 1

CHAPTER 7. NUMERICAL METHODS 122

NR = len(a) # number of rows

NC = len(b[0]) # number of columns

for row in range(NR):

for col in range(NC):

for i in range(len(a[0])): # number of columns of A

c[row][col] += a[row][i] * b[i][col]

print (c)

Using numpy we can solve the same problem in a much simpler manner

Example solve-eqn-numpy.py

import numpy as np

b = np.array([0,9,0])

A = np.array([[4,1,-2], [2,-3,3],[-6,-2,1]])

print (np.linalg.inv(A) @ b)

The result will be [0.75 -2. 0.5], that means x = 0.75, y = −2, z = 0.5 . This can be veri�ed by
substituting them back in to the equations.

Exercise: solve x+y+3z = 6; 2x+3y-4z=6;3x+2y+7z=0

7.9 Inverse of Matrix by Gauss-Jordan method

If the matrix X is the inverse of matrix A, then AX = I . We form an augmented matrix AI and
apply the Gauss-Jordan elimination process to all the columns. In the end of it, when the �rst half
A becomes I , the second half will be A−1. The program gauss-jordan-invert.py demonstrates
the process.

import numpy as np

a = np.array([[2,1,-1,1,0,0],[-3,-1,2, 0,1,0],[-2,1,2,0,0,1]], dtype='float')

NR = len(a)

NC = NR + 3 # three more columns, Augmented matrix

for anchor in range(NR-1):

for row in range(anchor, NR-1):

ratio = a[row+1,anchor]/a[anchor,anchor]

a[row+1] = np.subtract(a[row+1],a[anchor]*ratio)

print (a,'\n')

for anchor in range(NR-1, 0,-1): # looping for 2, 1,

for row in range(anchor):

ratio = a[row,anchor]/a[anchor,anchor]

a[row] = np.subtract(a[row],a[anchor]*ratio)

print (a,'\n')

ia = a[:,3:6] # extract columns 3,4,5

print (ia)

The program prints

[[4. 3. -1.]

[-2. -2. 1.]

[5. 4. -1.]]

CHAPTER 7. NUMERICAL METHODS 123

Figure 7.7: Output of ls�t.py

7.10 Least Squares Fitting

A mathematical procedure for �nding the best-�tting curve f(x) for a given set of points (xn, yn)
by minimizing the sum of the squares of the vertical o�sets of the points from the curve is called
least squares �tting. The least square �t is obtained by minimizing the function,

S(a0, a1, . . . , am) =

n∑
i=0

[yi − f(xi)]
2

(7.24)

with respect to each aiand the condition for that is

∂S

∂ai
= 0, i = 0, 1, . . .m (7.25)

For a linear �t, the equation is
f(a, b) = a+ bx

Solving the equations ∂S
∂a = 0 and ∂S

∂b = 0 will give the result,

b =

∑
yi(x− x)∑
xi(x− x)

, and a = y − xb (7.26)

where x and y are the mean values de�ned by the equations,

x =
1

n+ 1

n∑
i=0

xi, y =
1

n+ 1

n∑
i=0

yi (7.27)

The program ls�t.py demonstrates the usage of equations 7.26 and 7.27.

Example ls�t.py

import numpy as np

import matplotlib.pyplot as plt

NP = 50

r = 2* np.random.ranf([NP]) - 0.5

CHAPTER 7. NUMERICAL METHODS 124

x = np.linspace(0,10,NP)

data = 3 * x + 2 + r

xbar = np.mean(x)

ybar = np.mean(data)

b = sum(data*(x-xbar)) / sum(x*(x-xbar))

a = ybar - xbar * b

print a,b

y = a + b * x

plt.plot(x,y)

plt.plot(x,data,'ob')

plt.show()

The raw data is made by adding random numbers (between -1 and 1) to the y coordinates generated
by y = 3∗x+ 2 . The Numpy functions mean() and sum() are used. The output is shown in �gure
7.7.

7.11 Monte Carlo methods

We only provide a glimpse of this method using an example program to calculate the value of π.
We consider a square shaped area ranging from the coordinates (0,0) to (1,1), and a quarter of a
circle centered at (0,0). We randomly generate points in the range 0 to 1, representing the x and
y coordinates of a random point inside the square. We calculate the distance to the point from
the origin to �nd out whether it falls inside the circle. This probability is decided by the area
of the circle (one fourth of it) and that of the square. The program pi-value.py is listed below.
Accuracy of the result depends on the number of trials.

from random import random

from math import sqrt

NP = 100000

inside = 0

for k in range(NP):

x = random()

y = random()

r = sqrt(x**2 + y**2)

if r <= 1:

inside += 1

ratio = inside / NP

print (4*ratio)

7.12 Fourier Series

A Fourier series is an expansion of a periodic function f(x) in terms of an in�nite sum of sines
and cosines. The computation and study of Fourier series is known as harmonic analysis and is
extremely useful as a way to break up an arbitrary periodic function into a set of simple terms that
can be plugged in, solved individually, and then recombined to obtain the solution to the original
problem or an approximation to it to whatever accuracy is desired or practical.

CHAPTER 7. NUMERICAL METHODS 125

Figure 7.8: Sawtooth and Square waveforms generated using Fourier series.

The examples below shows how to generate a square wave and sawtooth wave using this tech-
nique. To make the output better, increase the number of terms by changing the argument of the
range() function, used in the for loop. The output of the programs are shown in �gure 7.8.

Example fourier_square.py

import numpy as np

import matplotlib.pyplot as plt

N = 100 # number of points

x = np.linspace(0.0, 2 * np.pi, N)

y = np.zeros(N)

for n in range(5):

term = np.sin((2*n+1)*x) / (2*n+1)

y = y + term

plt.plot(x,y)

plt.show()

Example fourier_sawtooth.py

import numpy as np

import matplotlib.pyplot as plt

N = 100 # number of points

x = np.linspace(-np.pi, np.pi, N)

y = np.zeros(N)

for n in range(1,10):

term = (-1)**(n+1) * np.sin(n*x) / n

y = y + term

plt.plot(x,y)

plt.show()

7.13 Exercises

All problems are to be solved by writing Python code.

1. Evaluate sin(π/8)using Taylor series.

CHAPTER 7. NUMERICAL METHODS 126

2. Make a di�erence table of sin(x) for x = [10,10,30,40] degrees. Use Newton's forward di�er-
ence formula to evaluate sin(25).

3. Make di�erence table from x = [0, 1, 2, 3] and y = [0, 1, 16, 81]. Use interpolation to evaluate
y(2.5) and compare it with 2.54. Explain the reason for error.

4. Using data set x = [0, 1, 4, 5] and y = [2, 12, 80, 150] to evaluate y(3) using Lagrange interpo-
lation.

5. Using data set x = [0, 1, 4, 5] and y = [2, 12, 80, 150] to evaluate y(3) using Newton's general
interpolation formula.

6. Integrate lnx, ex from x = 1to 2.

7. Using trapezoidal method integrate
∫ 5

0
1

1+xdx

8. Using Simpson's 1/3 rule integrate
∫ 5

0
1
xdx .Compare error with analytical result for n=6

and10.

9. Integrate dx
dt = xt ; x(0) = 1 in the interval [0, 1] with a step size 0.1 and compare the results

of Euler and Runge-Kutta4 methods.

10. Solve 2x+ y = 3;−x+ 4y = 0; 3 + 3y = −1 using matrices.

11. Write Python code, using numpy, to solve the following equations using matrices
4x+ y − 2z = 0

2x− 3y + 3z = 9
−6x− 2y + z = 0

12. Find the roots of 5x2 + 3x− 6 using bisection method.

13. Solve the equation x = cos(x) by the Bisection method and by the Newton-Raphson method.

14. Solve the equation x5 − 3x4 + 2x3 − x2 + x = 3 using the Bisection method.

15. Find the all the roots of sin(x) between 0 and 10, using Newton-Raphson method.

Chapter 8

Applications in Mathematics and
Physics

This chapter demonstrates some of the applications of Numpy, Scypy and matplotlib in the �eld
of physics. Some randomly chosen examples from various topics are included.

8.1 Addition of two sine waves, Beats

It is well known that superimposing two soundwaves having nearby frequencies create beats. For
example two sound sources having 3000 Hz and 3100 Hz generates 100 Hz beats. This process
can be understood by adding the two waveforms mathematically. The program sum-of-sines.py
listed below gives the output as shown in the �gure 8.1.

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(0, .03, 5000) # array of time, 0 to 30 milliseconds

f1 = 3000

wave1 = np.sin(2*np.pi*f1*t) # 100 Hz sine wave

f2 = 3100

Figure 8.1: beats

127

CHAPTER 8. APPLICATIONS IN MATHEMATICS AND PHYSICS 128

Figure 8.2: Amplitude Modulation

wave2 = np.sin(2*np.pi*f2*t) # 104 Hz sine wave

plt.plot(t, wave1 + wave2)

plt.show()

8.2 Amplitude Modulation

s (t) = Ac [1 + µ cos (2πfmt)] cos (2πfct) (8.1)

The eqation 8.1 represents amplitude modulation, where s(t) is the modulated wave, Ac is the
amplitude of the carrier wave, fc the frequency of the carrier, fmthe frequency of the modulating
signal and µ the modulation index. The program am.py listed below gives the output shown in
the �gure 8.2. The various input parameters, for example the modulation index, may be changed
to view the results.

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(0, .05, 500) # array of time

Ac = 10

mi = 0.5

Fc = 1.e6

Fm = 1.e2

res = Ac*(1+mi*np.cos(2*np.pi*Fm*t))*np.cos(2*np.pi*Fc*t)

plt.plot(t, res)

plt.show()

8.3 Radioactive decay

dN

dt
= −λN (8.2)

The decay of an unstable nucleus is entirely random in time so it is impossible to predict when
a particular atom will decay. But the number of decay events dN expected to occur in a small
interval of time dt is proportional to the number of atoms present N, given by the equation8.2.
Analytically solving it shows that the decay is exponential. We can also solve it by integrating

CHAPTER 8. APPLICATIONS IN MATHEMATICS AND PHYSICS 129

Figure 8.3: (a)Trajectory in magnetic �eld.(b) with E & M �elds

the equation 8.2 numerically. The program rdecay-scipy.py listed below plots the number of
radioactive atoms as a function of time.

import numpy as np

import matplotlib.pyplot as plt

from scipy import integrate

L = 5 # decay constant

def derivative(y, t0):

return -L * y # dN/dt = -L * N

N = 1000 # value at t = 0

dt = 0.1

t = np.arange(0, 1, dt) #time span and steps

nt = integrate.odeint(derivative, N, t) # integrate

plt.plot(t, nt[:,0]) # extract the first column from the 2D array

plt.show()

8.4 Charged particle in E and M �elds

Using the equations of Newtonian mechanics one can predict the position and velocity of a body if
the initial position and velocity are given, The forces acting on it gives the acceleration. Integrating
the acceleration gives velocity and position, enabling us to compute the trajectory of the body.

Computing the trajectory of a charged particle in electric and magnetic �elds has numerous
applications in science and technology, for example in the designing of particle accelerators. The
values are taken from the �rst cyclotron accelerator made by E Lawrence https://accelconf.

web.cern.ch/Cyclotrons2010/talks/mom1cio02_talk.pdf. We are calculating the trajectory
of an 80 keV proton in a 0.82 Tesla magnetic �eld. The trajectory is traced for 79 nanoseconds,
slightly less than one full circle. The radius of the orbit is around 10 cm. The program lorentz-
force-scipy.py is listed below, and the output is shown in �gure 8.3(a).

import numpy as np

from scipy import integrate

import matplotlib.pyplot as plt

https://accelconf.web.cern.ch/Cyclotrons2010/talks/mom1cio02_talk.pdf
https://accelconf.web.cern.ch/Cyclotrons2010/talks/mom1cio02_talk.pdf

CHAPTER 8. APPLICATIONS IN MATHEMATICS AND PHYSICS 130

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=plt.figaspect(1.))

ax = fig.add_subplot(projection = '3d')

m = 1.67e-27 # proton mass in Kg

q = 1.60217663e-19 # proton charge in Coulombs

vx = 3.9e6 # velocity of 80keV proton in meter/sec

Bz = .82 # magnetic field in teasla

E = np.array([0, 0, 0]) # Electric field components Ex,Ey & Ez in volts

B = np.array([0, 0, Bz]) # Magnetic field

def solver(X, t0): # X is a six element array, t0 required for the solver

v = np.array([X[3], X[4], X[5]]) # make the velocity vector

a = q * (E + np.cross(v,B)) / m # F = q v x B ; a = F/m

return [X[3], X[4], X[5], a[0], a[1], a[2]]

tmax = 79.e-9 # calculate up to 50 seconds

x0 = [0, 0, 0, vx, 0, 0] # position & velocity, at t = 0

t = np.linspace(0, tmax, 10000) # array of time coordinate

pv = integrate.odeint(solver, x0, t)

integrate for position and velocity

ax.plot(pv[:,0], pv[:,1], pv[:,2]) # 3d plot of x, y and z

ax.set_zlabel('Z axis')

plt.show()

The values of various parameters may be changed to view the results. Applying a electric �eld in
the Z direction results in a helical trajectory as shown in the �gure 8.3(b). The time interval is
increased by ten times to .79 microseconds.

Chapter 9

Type setting using LATEX

LATEX is a powerful typesetting system, used for producing scienti�c and mathematical documents
of high typographic quality. LATEX is not a word processor! Instead, LATEX encourages authors
not to worry too much about the appearance of their documents but to concentrate on getting
the right content. You prepare your document using a plain text editor, and the formatting is
speci�ed by commands embedded in your document. The appearance of your document is decided
by LATEX, but you need to specify it using some commands. In this chapter, we will discuss some
of these commands mainly to typeset mathematical equations. 1

9.1 Document classes

LATEX provides several prede�ned document classes (book, article, letter, report, etc.) with exten-
sive sectioning and cross-referencing capabilities. Title, chapter, section, subsection, paragraph,
subparagraph etc. are speci�ed by commands and it is the job of LATEX to format them properly.
It does the numbering of sections automatically and can generate a table of contents if requested.
Figures and tables are also numbered and placed without the user worrying about it.

The latex source document (the .tex �le) is compiled by the latex program to generate a device
independent (the .dvi �le) output. From that you can generate postscript or PDF versions of the
document. We will start with a simple example hello.tex to demonstrate this process. In a line,
anything after a % sign is taken as a comment.

Example hello.tex

\documentclass{article}

\begin{document}

Small is beautiful. % I am just a comment

\end{document}

Compile, view and make a PDF �le using the following commands:
$ latex hello.tex
$ xdvi hello.dvi
$ dvipdf hello.dvi

The output will look like : Small is beautiful.
1http://www.latex-project.org/
http://mirror.ctan.org/info/lshort/english/lshort.pdf
http://en.wikibooks.org/wiki/LATEX

131

CHAPTER 9. TYPE SETTING USING LATEX 132

9.2 Modifying Text

In the next example texts.tex we will demonstrate di�erent types of text. We will \newline or \\
to generate a line break. A blank line will start a new paragraph.

Example texts.tex

\documentclass{article}
\begin{document}
This is normal text.
\newline
\textbf{This is bold face text.}
\textit{This is italic text.}\\
\tiny{This is tiny text.}
\large{This is large text.}
\underline{This is underlined text.}
\end{document}

Compiling texts.tex, as explained in the previous example, will genearte the following output.

This is normal text.

This is bold face text. This is italic text.

This is tiny text. This is large text. This is underlined text.

9.3 Dividing the document

A document is generally organized in to sections, subsections, paragraphs etc. and
Latex allows us to do this by inserting commands like section subsection etc. If the
document class is book, you can have chapters also. There is a command to generate
the table of contents from the sectioning information.2

Example sections.tex

\documentclass{article}
\begin{document}
\tableofcontents
\section{Animals}
This document de�nes sections.
\subsection{Domestic}
This document also de�nes subsections.
\subsubsection{cats and dogs}
Cats and dogs are Domestic animals.
\end{document}

The output of sections.tex is shown in �gure 9.1.
2To generate the table of contents, you may have to compile the document two times.

CHAPTER 9. TYPE SETTING USING LATEX 133

Figure 9.1: Output of sections.tex

9.4 Environments

Environments decide the way in which your text is formatted : numbered lists, ta-
bles, equations, quotations, justi�cations, �gure, etc. are some of the environments.
Environments are de�ned like :

\begin{environment_name} your text \end{environment_name}
The example program environ.tex demonstrates some of the environments.

Example environs.tex

\documentclass{article}
\begin{document}
\begin{�ushleft} A bulleted list. \end{�ushleft}
\begin{itemize} \item dog \item cat \end{itemize}
\begin{center} A numbered List. \end{center}
\begin{enumerate} \item dog \item cat \end{enumerate}
\begin{�ushright} This text is right justi�ed. \end{�ushright}
\begin{quote}
Any text inside quote\\ environment will appe-\\ ar as typed.\\
\end{quote}
\begin{verbatim}
x = 1
while x <= 10:

print x * 5
x = x + 1

\end{verbatim}

CHAPTER 9. TYPE SETTING USING LATEX 134

\end{document}
The enumerate and itemize are used for making numbered and non-numbered

lists. Flushleft, �ushright and center are used for specifying text justi�cation. Quote
and verbatim are used for portions where we do not want LATEX to do the formatting.
The output of environs.tex is shown below.

A bulleted list.

� dog

� cat

A numbered List.

1. dog

2. cat

This text is right justi�ed.

Any text inside quote
environment will appe-
ar as typed.

x = 1 # a Python program
while x <= 10:

print x * 5
x = x + 1

9.5 Typesetting Equations

There two ways to typeset mathematical formulae: in-line within a paragraph, or in a
separate line. In-line equations are entered between two $ symbols. The equations in
a separate line can be done within the equation environment. Both are demonstrated
in math1.tex. We use the amsmath package in this example.

Example math1.tex

\documentclass{article}
\usepackage{amsmath}
\begin{document}
The equation $a^2 + b^2 = c^2$ is typeset as inline.

CHAPTER 9. TYPE SETTING USING LATEX 135

The same can be done in a separate line using
\begin{equation}
a^2 + b^2 = c^2
\end{equation}
\end{document}

The output of this �le is shown below.
The

equation a2 + b2 = c2 is typeset as inline. The same can be done in a separate line
using

a2 + b2 = c2 (9.1)

The equation number becomes 5.1 because this happens to be the �rst equation
in chapter 5.

9.5.1 Building blocks for typesetting equations

To typeset equations, we need to know the commands to make constructs like frac-
tion, sqareroot, integral etc. The following list shows several commands and corre-
sponding outputs. For each item, the output of the command, between the two $
signs, is shown on the right side. The reader is expected to insert then inside the
body of a document, compile the �le and view the output for practicing.

1. Extra space3 : $A \quad B\qquad C$ A B C

2. Greek letters : $ \alpha \beta \gamma \pi$ αβγπ

3. Subscript and Exponents : $A_n \quad A^m $ An Am

4. Multiple Exponents : $a^b \quad a^{b^c}$ ab ab
c

5. Fractions : $\frac{3}{5}$ 3
5

6. Dots : $n! = 1 \cdot 2 \cdots (n-1) \cdot n$ n! = 1 · 2 · · · (n− 1) · n

7. Under/over lines : $0.\overline{3} = \underline{1/3}}$ 0.3 = 1/3

8. Vectors : \vec{a} ~a

9. Functions : $\sin x + \arctan y$ sinx+ arctan y

10. Square root : $\sqrt{x^2+y^2}$
√
x2 + y2

11. Higher roots : $z=\sqrt[3]{x^{2} + \sqrt{y}}$ z = 3
√
x2 +

√
y

3\quad is for inserting space, the size of a \quad corresponds to the width of the character `M' of the current
font. Use \qquad for larger space.

CHAPTER 9. TYPE SETTING USING LATEX 136

12. Equalities : $A \neq B \quad A \approx C$ A 6= B A ≈ C

13. Arrows : $\Leftrightarrow\quad\Downarrow$ ⇔ ⇓

14. Partial derivative : $\frac{\partial ^2A}{\partial x^2}$ ∂2A
∂x2

15. Summation : $\sum_{i=1}^n$
∑n

i=1

16. Integration : $\int_0^{\frac{\pi}{2} \sin x}$
∫ π

2

0
sinx

17. Product : \prod_ϵ
∏

ε

18. Big brackets : $\Big((x+1)(x-1)\Big)^{2}$
(
(x+ 1)(x− 1)

)2
19. Integral : $\int_a^b f(x) dx$

∫ b
a
f(x)dx

20. Operators : $\pm \div \times \cup \ast \$ ±÷× ∪ ∗

9.6 Arrays and matrices

To typeset arrays, use the array environment, that is similar to the tabular envi-
ronment. Within an array environment, & character separates columns, \\ starts a
new line. The command \hline inserts a horizontal line. Alignment of the columns
is shown inside braces using characters (lcr) and the | symbol is used for adding
vertical lines. An example of making a table is shown below.

$ \begin{array}{|l|cr|}\hline
person & sex & age \\
John & male & 20 \\
Mary & female & 10 \\
Gopal & male & 30 \\
\hline
\end{array} $

person sex age
John male 7
Mary female 20
Gopal male 30
The �rst column is left justi�ed, second is centered and the third is right justi�ed

(decided by the {|l|cr|}). If you insert a | character between c and r, it will add a
vertical line between second and third columns.

Let us make a matrix using the same command.

$ A = \left(
\begin{array}{ccc}
x_1 & x_2 & \ldots \\

CHAPTER 9. TYPE SETTING USING LATEX 137

y_1 & y_2 & \ldots \\
\vdots & \vdots & \ddots \\
\end{array}
\right) $

The output is shown below. The \left(and \right) provides the enclosure. All the
columns are centered. We have also used horizontal, vertical and diagonal dots in
this example.

A =

 x1 x2 . . .
y1 y2 . . .
...

...
. . .

9.7 Floating bodies, Inserting Images

Figures and tables need special treatment, because they cannot be broken across
pages. One method would be to start a new page every time a �gure or a table is
too large to �t on the present page. This approach would leave pages partially empty,
which looks very bad. The easiest solution is to �oat them and let LATEX decide
the position. (You can in�uence the placement of the �oats using the arguments
[htbp], here, top, bottom or special page). Any material enclosed in a �gure or table
environment will be treated as �oating matter. The graphicsx packages is required
in this case.

\usepackage{graphicx}
\text{Learn how to insert pictures with caption inside the �gure environment.}
\begin{�gure}[h]
\centering
\includegraphics[width=0.2\textwidth]{pics/arcs.eps}
\includegraphics[width=0.2\textwidth]{pics/sawtooth.eps}
\caption{Picture of Arc and Sawtooth, inserted with [h] option.}
\end{�gure}

The result is shown below.

Learn how to insert pictures with caption inside the �gure environment.

Figure 9.2: Picture of Arc and Sawtooth, inserted with [h] option.

CHAPTER 9. TYPE SETTING USING LATEX 138

9.8 Example Application

Latex source code for a simple question paper listed below.

Example qpaper.tex

\documentclass{article}
\usepackage{amsmath}
begin{document}
\begin{center}
\large{\textbf{Sample Question Paper\\for\\
Mathematics using Python}}
\end{center}
\begin{tabular}{p{8cm}r}
\textbf{Duration:3 Hrs} & \textbf{30 weightage}
\end{tabular}\\
\section{Answer all Questions. $4\times 1\frac{1}{2}$}
\begin{enumerate}
\item What are the main document classes in LATEX.
\item Typeset $\sin^{2}x+\cos^{2}x=1$ using LATEX.
\item Plot a circle using the polar() function.
\item Write code to print all perfect cubes upto 2000.
\end{enumerate}
\section{Answer any two Questions. 3×5}
\begin{enumerate}
\item Set a sample question paper using LATEX.
\item Using Python calculate the GCD of two numbers
\item Write a program with a Canvas and a circle.
\end{enumerate}
\begin{center}\text{End}\end{center}
\end{document}

The formatted output is shown below.

CHAPTER 9. TYPE SETTING USING LATEX 139

9.9 Exercises

1. What are the main document classes supported by LATEX.

2. How does Latex di�er from other word processor programs.

3. Write a .tex �le to typeset 'All types of Text Available' in tiny, large, underline
and italic.

4. Rewrite the previous example to make the output a list of numbered lines.

5. Generate an article with section and subsections with table of contents.

6. Typeset 'All types of justi�cations' to print it three times; left, right and cen-
tered.

7. Write a .tex �le that prints 12345 in �ve lines (one character per line).

8. Typeset a Python program to generate the multiplication table of 5, using
verbatim.

9. Typeset sin2 x+ cos2 x = 1

CHAPTER 9. TYPE SETTING USING LATEX 140

10. Typeset
(√

x2 + y2
)2

= x2 + y2

11. Typeset
∑∞

n=1

(
1 + 1

n

)n
12. Typeset ∂A

∂x
= A

13. Typeset
∫ π
0
cosx.dx

14. Typeset x = −b±
√
b2−4ac
2a

15. Typeset A =

(
1 2
3 4

)
16. Typeset R =

(
sin θ cos θ
cos θ sin θ

)
Programming can be learned better by practicing and it requires an operating sys-
tem, and Python interpreter along with some library modules. The following section
explains how to install GNU/Linux on a computer. We have selected the Ubuntu
distribution due to its relatively simple installation procedure, ease of maintenance
and support for most of the hardware available in the market.

Chapter 10

Installing GNU/Linux Operating
System

10.1 Where to get Ubuntu

Dowload the ISO image of the latest distribution from https://ubuntu.com/download/desktop
, preferably the latest Long Term Support (LTS) version. At the time of writing
this, Ubuntu-20.04 is currently the latest. A startup disk need to be created from
this ISO image, using a USB pendrive. MS-Windows users may download the pro-
gram Rufus(from https://rufus.ie/) and use that to make a USB pendrive bootable
with this ISO image.

After making the bootable pendrive, shut down the PC, insert the pendrive and
select the boot device while starting again. The keys to press to enter BIOS de-
pends on the brand of the PC you have (for HP it is ESC key, for Lenovo Fn+F2
and Fn+F12 to select the boot device, more info http://www.disk-image.com/faq-
bootmenu.htm). The system will boot in to Ubuntu Desktop and you can use it
in the live mode, without even installing it. However, to install additional software
and to save data, you need to install it in to a hard disk partition.

10.2 Installing Ubuntu

Most of the users prefer a dual boot system, to keep their MSWindows working. We
will explain the installation process keeping that handicap in mind. All we need is
an empty partition of minimum 20 GB size to install Ubuntu. Free space inside a
Windows partition will not do, we need to format the partition to install Ubuntu.
The Ubuntu installer will make the system multi-boot by searching through all the
partitions for installed operating systems.

The System

141

CHAPTER 10. INSTALLING GNU/LINUX OPERATING SYSTEM 142

This section will describe how Ubuntu was installed on a system, with MSWin-
dows, having the following partitions:

C: (GNU/Linux calls it /dev/sda1) 200 GB
D: (/dev/sda5) 200 GB
E: (/dev/sda6) 100 GB
We will use the partition E: to install Ubuntu, it will be formatted.

The Procedure

Click on the Installer icon, the window shown next will pop up. Screens will
appear to select the language, time zone and keyboard layout as shown in the �gures
below.

Now we proceed to the important part, choosing a partition to install Ubuntu.

CHAPTER 10. INSTALLING GNU/LINUX OPERATING SYSTEM 143

The bar on the top graphically displays the existing partitions. Below that there
are three options provided :

1. Install them side by side.

2. Erase and use the entire disk.

3. Specify partitions manually.

If you choose the �rst option, the Installer will resize and repartition the disk to
make some space for the new system. By default this option is marked as selected.
The bar at the bottom shows the proposed partition scheme. In the present example,
the installer plans to divide the C: drive in to two partitions to put Ubuntu on the
second.

We are going to choose the third option, choose the partition manually. We will
use the last partition (drive E:) for installing Ubuntu. Once you choose that and
click forward, a screen will appear where we can add, delete and change partitions.
We have selected the third partition and clicked on Change. A pop-up window
appeared. Using that we selected the �le-system type to ext3, marked the format
option, and selected the mount point as / . The screen with the pop-up window is
shown below.

CHAPTER 10. INSTALLING GNU/LINUX OPERATING SYSTEM 144

If we proceed with this, a warning will appear complaining about the absence of
swap partitions. The swap partition is used for supplementing the RAM with some
virtual memory. When RAM is full, processes started but not running will be
swapped out. One can install a system without swap partition but it is a good idea
to have one.

We decide to go back on the warning, to delete the E: drive, create two new
partitions in that space and make one of them as swap. This also demonstrates how
to make new partitions. The screen after deleting E: , with the pop-up window to
make the swap partition is shown below.

CHAPTER 10. INSTALLING GNU/LINUX OPERATING SYSTEM 145

Figure 10.1: Making the partition to install Ubuntu.

We made a 4 GB swap. The remaining space is used for making one more
partition, as shown in the �gure 10.1.

CHAPTER 10. INSTALLING GNU/LINUX OPERATING SYSTEM 146

Once disk partitioning is over, you will be presented with a screen to enter a
user name and password.1 A warning will be issued if the password is less than 8
characters in length. You will be given an option to import desktop settings from
other installations already on the disk, choose this if you like. The next screen will
con�rm the installation. After the installation is over, mat take 10 to 15 minutes,
you will be prompted to reboot the system. On rebooting you will be presented
with a menu, to choose the operating system to boot. First item in the menu will
be the newly installed Ubuntu.

10.3 Installing Additional Software

The ISO image used for installation contains a selected set from the packages, like
web browser, o�ce package, document viewer etc., from the Ubuntu repository. The
repository contains tens of thousands of packages, that can be installed very easily.
You need to have a reasonably fast Internet connection for this purpose. Additional
packages can be installed using command line tools or by using package management
programs with a GUI.

For example to install pytho3-matplotlib issue the following commands

$ sudo apt update # do this once
$ sudo apt install pytho3-matplotlib

This will also install all the packages required for python3-matplotlib. The package
management system handles all the dependencies.

10.4 Synaptic Package Manager

$ sudo apt install synaptic

will install the synaptic package manager. Once installed, it can be started from the
Desktop. The synaptic window will popup as shown in �gure 10.2.

Select Settings->Repositories to get a pop-up window as shown below. Tick
the four repositories, close the pop-up window and Click on Reload. Synaptic will
now try to download the index �les from all these repositories. It may take several
minute.

1All GNU/Linux installations ask for a root password during installation. For simplicity, Ubuntu has decided to
hide this information. The �rst user created during installation has special privileges and that password is asked,
instead of the root password, for all system administration jobs, like installing new software.

CHAPTER 10. INSTALLING GNU/LINUX OPERATING SYSTEM 147

Figure 10.2: Synaptic package manager window

Now, you are ready to install any package from the Ubuntu repository. Search for

CHAPTER 10. INSTALLING GNU/LINUX OPERATING SYSTEM 148

any package by name, from these repositories, and install it. The added advantage
is that you need not remember the exact name of the package.

10.4.1 Behind the scene

Even though there are installation programs that performs all these steps automat-
ically,it is better to know what is really happening. Installing an operating system
involves;

� Partitioning of the hard disk

� Formatting the partitions

� Copying the operating system �les

� Installing a boot loader program

The storage space of a hard disk drive can be divided into separate data areas,
known as partitions. You can create primary partitions and extended partitions.
Logical drives (secondary partitions can be created inside the extended partitions).
On a disk, you can have up to 4 partitions, where one of them could be an extended
partition. You can have many logical drives inside the extended partition.

On a MSWindows system, the primary partition is called the C: drive. The logical
drives inside the extended partition are named from D: onwards. GNU/Linux uses a
di�erent naming convention. The individual disks are named as /dev/sda , /dev/sdb
etc. and the partitions inside them are named as /dev/sda1, /dev/sda2 etc. The
numbering of secondary partitions inside the logical drive starts at /dev/sda5. (1 to
4 are reserved for primary and extended). Hard disk partitioning can be done using
the fdisk program. The installation program also does this for you.

The process of making a �le system on a partition is called formatting. There
are many di�erent types of �le systems. MSWindows use �le systems like FAT32,
NTFS etc. and GNU/Linux mostly uses �le systems like ext3, ext4 etc.

The operating system �les are kept in directories named boot, sbin, bin, etc etc.
The kernel that loads while booting the system is kept in /boot. The con�guration
�les are kept in /etc. /sbin and /bin holds programs that implements many of the
shell commands. Most of the application programs are kept in /usr/bin area.

The boot loader program is the one provides the selection of OS to boot, when
you power on the system. GRUB is the boot loader used by most of the GNU/Linux
systems.

Bibliography

[2] http://en.wikipedia.org/wiki/List_of_curves

[5] http://mathworld.wolfram.com/

[6] http://www.scipy.org/Numpy_Example_List

[7] http://docs.scipy.org/doc/

[8] http://numericalmethods.eng.usf.edu/mws/gen/07int/index.html

149

	Introduction
	Hardware Components
	Software components
	The Operating System
	The User Interface
	The Command Terminal

	The File-system
	Ownership & permissions
	Current Directory

	Text Editors
	High Level Languages
	On Free Software
	Exercises

	Programming in Python
	Getting started with Python
	Two modes of using Python Interpreter

	Variables and Data Types
	Operators and their Precedence
	Python Strings
	Slicing

	Python Lists
	Mutable and Immutable Types
	Input from the Keyboard
	Python Syntax, Colon & Indentation
	Controlling the Program Flow
	Iteration: while loops

	Iteration: for loops
	Conditional Execution: if, elif and else
	Modify loops : break and continue
	Line joining
	Exercises
	Functions
	Scope of variables
	Optional and Named Arguments

	More on Strings and Lists
	split and join
	Manipulating Lists
	Copying Lists

	Python Modules and Packages
	Different ways to import
	Packages

	File Input/Output
	Formatted Printing
	Exception Handling
	Matrices in pure Python
	Transpose of a matrix
	Matrix multiplication
	Cross product two vectors
	Determinant of a Matrix
	Inverting a Matrix

	Object Oriented Programming in Python
	Inheritance, reusing code

	Turtle Graphics
	Writing GUI Programs
	Exercises

	Arrays and Matrices
	NumPy Arrays
	arange(start, stop, step)
	linspace(start, stop, number of elements)
	zeros(shape)
	ones(shape)
	random.random(shape)
	reshape(array, newshape)
	Copying
	Saving and Restoring
	Slicing to extract elements, rows and columns
	Arithmetic Operations
	Pauli spin matrices

	Vectorizing Functions
	Exercises

	Data visualization
	The Matplotlib Module
	2D plots
	Polar plots
	Pie Charts
	Multiple plots

	Plotting mathematical functions
	Sine function and friends
	Trouble with Circle
	Parametric plots

	Plotting Error Bars
	Simple 2D animation
	Famous Curves
	Astroid
	Ellipse
	Spirals of Archimedes and Fermat
	Spirograph

	2D plot using colors
	Fractals

	3D Plots
	3D Line Plots
	Meshgrids
	Surface3D Plots
	Spherical harmonics
	Animating 3D plots

	Exercises

	Symbolic Computation, SymPy
	The SymPy Module
	Symbols
	Formatting the Output
	Simplification
	Expand
	Factor
	collect

	Calculus
	differentiation
	Integration
	Numeric Integration

	Introduction to Pandas
	Series
	DataFrame
	From a Numpy array
	From a Dictionary of Series
	From a Dictionary of Lists/Arrays
	Loading and Saving CSV format files
	Index and Column Properties
	Column Operations
	Indexing and Slicing Rows
	Concatenating DataFrames

	Practical Examples
	Temperature Data
	Electoral bond data

	Numerical methods
	Taylor's Series
	Polynomial Interpolation
	Difference Table
	Newton's forward difference formula
	Newton's backward difference formula
	Lagrange's Interpolation formula
	Newton's General Interpolation Formula

	Numerical Integration
	Trapezoidal Rule
	Simpson's 1/3-Rule

	Derivatives from the Interpolation Formula
	Numpy gradient function

	First Order Ordinary Differential Equations
	Euler method
	Second order Runge-Kutta method
	Fourth order Runge-Kutta method
	Function depending on the integral

	Second Order Ordinary Differential Equations
	Solution of Algebraic Equations
	The Bisection method
	Regula Falsi (method of Chords)
	Newton-Raphson Method

	System of Linear Equations
	Gauss-Jordan Elimination method
	Matrix Inversion method

	Inverse of Matrix by Gauss-Jordan method
	Least Squares Fitting
	Monte Carlo methods
	Fourier Series
	Exercises

	Applications in Mathematics and Physics
	Addition of two sine waves, Beats
	Amplitude Modulation
	Radioactive decay
	Charged particle in E and M fields

	Type setting using LaTeX
	Document classes
	Modifying Text
	Dividing the document
	Environments
	Typesetting Equations
	Building blocks for typesetting equations

	Arrays and matrices
	Floating bodies, Inserting Images
	Example Application
	Exercises

	Installing GNU/Linux Operating System
	Where to get Ubuntu
	Installing Ubuntu
	Installing Additional Software
	Synaptic Package Manager
	Behind the scene

